1
|
Hamamura K, Nagao M, Furukawa K. Regulation of Glycosylation in Bone Metabolism. Int J Mol Sci 2024; 25:3568. [PMID: 38612379 PMCID: PMC11011486 DOI: 10.3390/ijms25073568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Aichi, Japan
| |
Collapse
|
2
|
Kato H, Nagao M, Furukawa K, Mishima Y, Ichikawa S, Sato T, Miyazawa K, Hamamura K. Globo-series Gb4 activates ERK and promotes the proliferation of osteoblasts. J Oral Biosci 2024; 66:41-48. [PMID: 37939880 DOI: 10.1016/j.job.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES Globo-series Gb4 (globoside) is involved in the immune system and disease pathogenesis. We recently reported that systemic Gb4 deficiency in mice led to decreased bone formation due to a reduction in osteoblast number. However, it remains unclear whether Gb4 expressed in osteoblasts promotes their proliferation. Therefore, we investigated the role of Gb4 in osteoblast proliferation in vitro. METHODS We examined osteoblast proliferation in Gb3 synthase knockout mice lacking Gb4. We investigated the effects of Gb4 synthase knockdown in the mouse osteoblast cell line MC3T3-E1 on its proliferation. Furthermore, we administered Gb4 to MC3T3-E1 cells in which Gb4 was suppressed by a glucosylceramide synthase (GCS) inhibitor and evaluated its effects on their proliferation. To elucidate the mechanisms by which Gb4 promotes osteoblast proliferation, the phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) levels were measured in MC3T3-E1 cells. RESULTS Osteoblast proliferation was lower in Gb3 synthase knockout mice lacking Gb4 than in wild-type mice. Proliferation was inhibited by Gb4 synthase knockdown in MC3T3-E1 cells. Furthermore, the administration of Gb4 to MC3T3-E1 cells, in which a GCS inhibitor suppressed Gb4, promoted their proliferation. Moreover, it increased the phosphorylated ERK1/2 levels in MC3T3-E1 cells. CONCLUSIONS Our results suggest that Gb4 expressed in osteoblasts promotes their proliferation through ERK1/2 activation.
Collapse
Affiliation(s)
- Hanami Kato
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shota Ichikawa
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
3
|
Attenuation of Bone Formation through a Decrease in Osteoblasts in Mutant Mice Lacking the GM2/GD2 Synthase Gene. Int J Mol Sci 2022; 23:ijms23169044. [PMID: 36012308 PMCID: PMC9409452 DOI: 10.3390/ijms23169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The ganglioside GD1a has been reported to promote the differentiation of mesenchymal stem cells to osteoblasts in cell culture systems. However, the involvement of gangliosides, including GD1a, in bone formation in vivo remains unknown; therefore, we herein investigated their roles in GM2/GD2 synthase-knockout (GM2/GD2S KO) mice without GD1a. The femoral cancellous bone mass was analyzed using three-dimensional micro-computed tomography. A histomorphometric analysis of bone using hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase was performed to examine bone formation and resorption, respectively. Calcein double labeling was also conducted to evaluate bone formation. Although no significant differences were observed in bone mass or resorption between GM2/GD2S KO mice and wild-type (WT) mice, analyses of the parameters of bone formation using HE staining and calcein double labeling revealed less bone formation in GM2/GD2S KO mice than in WT mice. These results suggest that gangliosides play roles in bone formation.
Collapse
|
4
|
Ehrenfeld M, Schrade A, Flisikowska T, Perl M, Hirsch ND, Sichler A, Geyer L, Flisikowski K, Wilhelm D, Schober SJ, Johannes L, Schnieke A, Janssen KP. Tumor targeting with bacterial Shiga toxin B-subunit in genetic porcine models for colorectal cancer and osteosarcoma. Mol Cancer Ther 2022; 21:686-699. [PMID: 35086950 DOI: 10.1158/1535-7163.mct-21-0445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
Abstract
The B-subunit of bacterial Shiga toxin (STxB) is non-toxic and has low immunogenicity. Its receptor, the glycosphingolipid Gb3/CD77, is overexpressed on the cell surface of human colorectal cancer (CRC). We tested whether genetic porcine models, closely resembling human anatomy and pathophysiology, can be used to exploit the tumor targeting potential of STxB. In accordance with findings on human CRC, the pig model APC1311 bound STxB in colorectal tumors, but not in normal colon or jejunum, except for putative enteroendocrine cells. In primary tumor cells from endoscopic biopsies, STxB was rapidly taken up along the retrograde intracellular route to the Golgi, whereas normal colon organoids did not bind or internalize STxB. Next, we tested a porcine model (TP53LSL-R167H) for osteosarcoma, a tumor entity with a dismal prognosis and insufficient treatment options, hitherto not known to express Gb3. Pig osteosarcoma strongly bound StxB and expressed the Gb3-synthase A4GALT. Primary osteosarcoma cells, but not normal osteoblasts, rapidly internalized fluorescently labelled STxB along the retrograde route to the Golgi. Importantly, six out of eight human osteosarcoma cell lines expressed A4GALT mRNA and showed prominent intracellular uptake of STxB. The physiological role of A4GALT was tested by Crispr/Cas9-mutagenesis in porcine LLC-PK1 kidney epithelial cells and RNA interference in MG-63 human osteosarcoma cells. A4GALT-deficiency or knock-down abolished STxB uptake and led to significantly reduced cell migration and proliferation, hinting towards a putative tumor-promoting role of Gb3. Thus, pig models are suitable tools for STxB-based tumor targeting, and may allow "reverse-translational" predictions on human tumor biology.
Collapse
Affiliation(s)
- Maximilian Ehrenfeld
- Departments of Surgery and Urology, Klinikum rechts der Isar, Technical University München
| | - Anna Schrade
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, School of Life Sciences, Technical University of Munich
| | - Markus Perl
- Department of Internal Medicine III, University Hospital Regensburg
| | - Noah-David Hirsch
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich
| | - Anna Sichler
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich
| | - Laura Geyer
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, School of Life Sciences, Technical University of Munich
| | - Dirk Wilhelm
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich
| | - Sebastian Johannes Schober
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich
| | - Ludger Johannes
- Endocytic Trafficking and Intracellular Delivery team, Institute Curie
| | | | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| |
Collapse
|
5
|
Kim ME, Seon JK, Kang JY, Yoon TR, Lee JS, Kim HK. Bone-Forming Peptide-4 Induces Osteogenic Differentiation and VEGF Expression on Multipotent Bone Marrow Stromal Cells. Front Bioeng Biotechnol 2021; 9:734483. [PMID: 34692657 PMCID: PMC8526923 DOI: 10.3389/fbioe.2021.734483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been widely used as treatment for bone repair. However, clinical trials on fracture repair have challenged the effectiveness of BMPs and suggested that delivery of multipotent bone marrow stromal cells (BMSCs) might be beneficial. During bone remodeling and bone fracture repair, multipotent BMSCs differentiate into osteoblasts or chondrocytes to stimulate bone formation and regeneration. Stem cell-based therapies provide a promising approach for bone formation. Extensive research has attempted to develop adjuvants as specific stimulators of bone formation for therapeutic use in patients with bone resorption. We previously reported for the first time bone-forming peptides (BFPs) that induce osteogenesis and bone formation. BFPs are also a promising osteogenic factor for prompting bone regeneration and formation. Thus, the aim of the present study was to investigate the underlying mechanism of a new BFP-4 (FFKATEVHFRSIRST) in osteogenic differentiation and bone formation. This study reports that BFP-4 induces stronger osteogenic differentiation of BMSCs than BMP-7. BFP-4 also induces ALP activity, calcium concentration, and osteogenic factors (Runx2 and osteocalcin) in a dose dependent manner in BMSCs. Therefore, these results indicate that BFP-4 can induce osteogenic differentiation and bone formation. Thus, treatment of multipotent BMSCs with BFP-4 enhanced osteoblastic differentiation and displayed greater bone-forming ability than BMP-7 treatment. These results suggest that BFP-4-stimulated cell therapy may be an efficient and cost-effective complement to BMP-7-based clinical therapy for bone regeneration and formation.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Biology, Immunology Research Lab, Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, College of Natural Sciences, Chosun University, Gwangju, South Korea
| | - Jong Keun Seon
- Korea Biomedical Materials and Devices Innovation Research Center of Chonnam National University Hospital, Gwangju, South Korea.,Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National, University Hwasun Hospital, Jeonnam, South Korea
| | - Ju Yeon Kang
- Korea Biomedical Materials and Devices Innovation Research Center of Chonnam National University Hospital, Gwangju, South Korea.,Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National, University Hwasun Hospital, Jeonnam, South Korea
| | - Taek Rim Yoon
- Korea Biomedical Materials and Devices Innovation Research Center of Chonnam National University Hospital, Gwangju, South Korea.,Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National, University Hwasun Hospital, Jeonnam, South Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab, Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, College of Natural Sciences, Chosun University, Gwangju, South Korea
| | - Hyung Keun Kim
- Korea Biomedical Materials and Devices Innovation Research Center of Chonnam National University Hospital, Gwangju, South Korea.,Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National, University Hwasun Hospital, Jeonnam, South Korea
| |
Collapse
|
6
|
Ghosh S, Trabbic KR, Shi M, Nishat S, Eradi P, Kleski KA, Andreana PR. Chemical synthesis and immunological evaluation of entirely carbohydrate conjugate Globo H-PS A1. Chem Sci 2020; 11:13052-13059. [PMID: 34123241 PMCID: PMC8163331 DOI: 10.1039/d0sc04595k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
An anticancer, entirely carbohydrate conjugate, Globo H-polysaccharide A1 (Globo H-PS A1), was chemically prepared and immunologically evaluated in C57BL/6 mice. Tumor associated carbohydrate antigen Globo H hexasaccharide was synthesized in an overall 7.8% yield employing a convergent [3 + 3] strategy that revealed an anomeric aminooxy group used for conjugation to oxidized PS A1 via an oxime linkage. Globo H-PS A1, formulated with adjuvants monophosphoryl lipid A and TiterMax® Gold. After immunization an antigen specific immune response was observed in ELISA with anti-Globo H IgG/IgM antibodies. Specificity of the corresponding antibodies was determined by FACS showing cell surface binding to Globo H-positive cancer cell lines MCF-7 and OVCAR-5. The anti-Globo H antibodies also exhibited complement-dependent cellular cytotoxicity against MCF-7 and OVCAR-5 cells.
Collapse
Affiliation(s)
- Samir Ghosh
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kevin R Trabbic
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Mengchao Shi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Sharmeen Nishat
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Pradheep Eradi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kristopher A Kleski
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| |
Collapse
|