1
|
Hernandez-Hernandez O, Sabater C, Calvete-Torre I, Doyagüez EG, Muñoz-Labrador AM, Julio-Gonzalez C, de Las Rivas B, Muñoz R, Ruiz L, Margolles A, Mancheño JM, Moreno FJ. Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates. NPJ Sci Food 2024; 8:74. [PMID: 39366963 PMCID: PMC11452612 DOI: 10.1038/s41538-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.
Collapse
Affiliation(s)
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - José M Mancheño
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, 28006, Madrid, Spain
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Sato K, Deguchi S, Nagai N, Yamamoto T, Mitamura K, Taga A. Neokestose suppresses the increase in plasma glucose caused by oral administration of sucrose in a streptozotocin‑induced diabetic rat. Sci Rep 2024; 14:16658. [PMID: 39030286 PMCID: PMC11271602 DOI: 10.1038/s41598-024-67458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Neokestose is considered to have a prebiotic function. However, the physiological activity of neokestose remains unknown. Neokestose has a blastose, a sucrose analog, in its structure. We previously demonstrated that oral administration of blastose to diabetic rats suppressed the increase in plasma glucose (PG) concentration after sucrose administration. Therefore, neokestose might have a similar effect. In this study, we investigated the effects of neokestose on PG concentrations and the mechanism of its action. We first administered neokestose orally to streptozotocin-induced diabetic rats and observed that the expected consequent increase in PG concentration was significantly suppressed. Next, we examined the inhibitory effect of neokestose on glycosidase activity, but observed only a slight inhibitory effect. Therefore, we hypothesized that neokestose might be hydrolyzed by gastric acid to produce blastose. We performed an acid hydrolysis of neokestose using artificial gastric juice. After acid hydrolysis, peaks corresponding to neokestose and its decomposition products including blastose were observed. Therefore, we suggest that neokestose and blastose, a decomposition product, synergistically inhibit glycosidase activity. These findings support the potential use of neokestose as a useful functional oligosaccharide that can help manage plasma glucose concentrations in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Kanta Sato
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Tetsushi Yamamoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Kuniko Mitamura
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Atsushi Taga
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
- Pathological and Biomolecule Analyses Laboratory, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
3
|
Yamamoto T, Shiburo R, Moriyama Y, Mitamura K, Taga A. Protein components of maple syrup as a potential resource for the development of novel anti‑colorectal cancer drugs. Oncol Rep 2023; 50:179. [PMID: 37594118 PMCID: PMC10463007 DOI: 10.3892/or.2023.8616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Maple syrup is a natural sweetener consumed worldwide. Active ingredients of maple syrup possess antitumor effects; however, these ingredients are phenolic compounds. The present study aimed to investigate components other than phenolic compounds that may have antitumor effects against colorectal cancer (CRC). Cell proliferation assays demonstrated that treatment with the more than 10,000 molecular weight fraction significantly inhibited viability in DLD‑1 cells. Therefore, we hypothesized that the protein components of maple syrup may be the active ingredients in maple syrup. We obtained protein components from maple syrup by ammonium sulfate precipitation, and treatment with the protein fraction of maple syrup (MSpf) was found to exhibit a potential antitumor effect. MSpf‑treated DLD‑1 colon adenocarcinoma cells exhibited significantly decreased proliferation, migration and invasion. In addition, upregulation of LC3A and E‑cadherin and downregulation of MMP‑9 expression levels were observed following MSpf treatment. Investigation of the components of MSpf suggested that it was primarily formed of advanced glycation end products (AGEs). Therefore, whether AGEs in MSpf affected the STAT3 pathway through the binding to its receptor, receptor of AGE (RAGE), was assessed. MSpf treatment was associated with decreased RAGE expression and STAT3 phosphorylation. Finally, to determine whether autophagy contributed to the inhibitory effect of cell proliferation following MSpf treatment, the effect of MSpf treatment on autophagy induction following bafilomycin A1 treatment, a specific autophagy inhibitor, was assessed. The inhibitory effect of MSpf treatment on cell proliferation was enhanced through the inhibition of autophagy by bafilomycin A1 treatment. These results suggested that AGEs in MSpf suppressed cell proliferation and epithelial‑mesenchymal transition through inhibition of the STAT3 signaling pathway through decreased RAGE expression. Therefore, AGEs in MSpf may be potential compounds for the development of antitumor drugs for the treatment of CRC with fewer adverse effects compared with existing antitumor drugs.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Ryota Shiburo
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Yoshie Moriyama
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-osaka 577-8502, Japan
- Antiaging Center, Kindai University, Higashi-osaka 577-8502, Japan
| |
Collapse
|
4
|
Mohammed F, Sibley P, Abdulwali N, Guillaume D. Nutritional, pharmacological, and sensory properties of maple syrup: A comprehensive review. Heliyon 2023; 9:e19216. [PMID: 37662821 PMCID: PMC10469071 DOI: 10.1016/j.heliyon.2023.e19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Maple syrup is a naturally sweet product consumed directly or introduced in the preparation of various maple-derived food products. Several studies have described the chemical isolation and identification of maple syrup compounds, with some presenting pharmacological properties. However, a detailed review on maple syrup nutritional properties has not been undertaken. This review presents detailed information about the nutritional, organoleptic, and pharmacological properties of maple syrup. Studies carried out on animal models and a limited number of human models emphasize the potential benefits of maple syrup as a substitute for refined sugars, indicating that it could contribute to improved metabolic health when used in moderation. However, further medical and nutritional health studies based on human health assessments are needed to better understand the mechanisms of action of the various components of maple syrup and its potential therapeutic properties to demonstrate a stronger justification for its consumption relative to refined sugars. In addition, we compare maple syrup and common sweeteners to provide a further critical perspective on the potential nutritional and health benefits of maple syrup.
Collapse
Affiliation(s)
- Faez Mohammed
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
- Faculty of Applied Science-Arhab, Sana'a University, Sana'a, Yemen
| | - Paul Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - Nada Abdulwali
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dominique Guillaume
- ICMR, School of Medicine-Pharmacy, CNRS-UMR 7312, 51 Rue Cognacq Jay, 51100 Reims, France
| |
Collapse
|
5
|
Nguyen VB, Wang SL, Phan TQ, Pham THT, Huang HT, Liaw CC, Nguyen AD. Screening and Elucidation of Chemical Structures of Novel Mammalian α-Glucosidase Inhibitors Targeting Anti-Diabetes Drug from Herbals Used by E De Ethnic Tribe in Vietnam. Pharmaceuticals (Basel) 2023; 16:ph16050756. [PMID: 37242539 DOI: 10.3390/ph16050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Among ten extracts of indigenous medicinal plants, the MeOH extract of Terminalia triptera Stapf. (TTS) showed the most efficient mammalian α-glucosidase inhibition for the first time. The data of screening bioactive parts used indicated that the TTS trunk bark and leaves extracts demonstrated comparable and higher effects compared to acarbose, a commercial anti-diabetic drug, with half-maximal inhibitory concentration (IC50) values of 181, 331, and 309 µg/mL, respectively. Further bioassay-guided purification led to the isolation of three active compounds from the TTS trunk bark extract and identified as (-)-epicatechin (1), eschweilenol C (2), and gallic acid (3). Of these, compounds 1 and 2 were determined as novel and potent mammalian α-glucosidase inhibitors. The virtual study indicated that these compounds bind to α-glucosidase (Q6P7A9) with acceptable RMSD values (1.16-1.56 Å) and good binding energy (DS values in the range of -11.4 to -12.8 kcal/mol) by interacting with various prominent amino acids to generate five and six linkages, respectively. The data of Lipinski's rule of five and absorption, distribution, metabolism, excretion and toxicity (ADMET)-based pharmacokinetics and pharmacology revealed that these purified compounds possess anti-diabetic drug properties, and the compounds are almost not toxic for human use. Thus, the findings of this work suggested that (-)-epicatechin and eschweilenol C are novel potential mammalian α-glucosidase inhibitor candidates for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Tu Quy Phan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Thi Huyen Thoa Pham
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
6
|
Kimura Y, Taniguchi M, Okuda T. Acertannin Prevented Dextran Sulfate Sodium-induced Colitis by Inhibiting the Colonic Expression of IL-23 and TNF-α in C57BL/6J Mice. PLANTA MEDICA 2023. [PMID: 36796450 DOI: 10.1055/a-2037-2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The present study investigates the effects of acertannin on colitis induced by dextran sulfate sodium (DSS) and changes in the colonic levels of the cytokines interleukin (IL)-1β, IL-6, IL-10, IL-23, tumor necrosis factor (TNF)-α, the chemokine monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF).We examine the following: inflammatory colitis was induced in mice by 2% DSS drinking water given ad libitum for 7 days. Red blood cell, platelets, and leukocyte counts and hematocrit (Ht), hemoglobin (Hb), and colonic cytokine and chemokine levels were measured. The disease activity index (DAI) was lower in DSS-treated mice orally administered acertannin (30 and 100 mg/kg) than in DSS-treated mice. Acertannin (100 mg/kg) inhibited reductions in the red blood cell count and Hb and Ht levels in DSS-treated mice. Acertannin prevented DDS-induced mucosal membrane ulceration of the colon and significantly inhibited the increased colonic levels of IL-23 and TNF-α. Our findings suggest that acertannin has potential as a treatment for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
- Previous affiliation: Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masahiko Taniguchi
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki, Osaka, Japan
| | - Takuo Okuda
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| |
Collapse
|
7
|
Sato K, Yamamoto T, Mitamura K, Taga A. Separation of Fructosyl Oligosaccharides in Maple Syrup by Using Charged Aerosol Detection. Foods 2021; 10:foods10123160. [PMID: 34945711 PMCID: PMC8701490 DOI: 10.3390/foods10123160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023] Open
Abstract
Fructosyl oligosaccharides, including fructo-oligosaccharide (FOS), are gaining popularity as functional oligosaccharides and have been found in various natural products. Our previous study suggested that maple syrup contains an unidentified fructosyl oligosaccharide. Because these saccharides cannot be detected with high sensitivity using derivatization methods, they must be detected directly. As a result, an analytical method based on charged aerosol detection (CAD) that can detect saccharides directly was optimized in order to avoid relying on these structures and physical properties to clarify the profile of fructosyl oligosaccharides in maple syrup. This analytical method is simple and can analyze up to hepta-saccharides in 30 min. This analytical method was also reliable and reproducible with high validation values. It was used to determine the content of saccharides in maple syrup, which revealed that it contained not only fructose, glucose, and sucrose but also FOS such as 1-kestose and nystose. Furthermore, we discovered a fructosyl oligosaccharide called neokestose in maple syrup, which has only been found in a few natural foods. These findings help to shed light on the saccharides profile of maple syrup.
Collapse
|
8
|
Authentication and quality control determination of maple syrup: A comprehensive review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Klassen L, Xing X, Tingley JP, Low KE, King ML, Reintjes G, Abbott DW. Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Front Microbiol 2021; 12:632684. [PMID: 33679661 PMCID: PMC7933471 DOI: 10.3389/fmicb.2021.632684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kristin E. Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L. King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Greta Reintjes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Schiano C, Grimaldi V, Scognamiglio M, Costa D, Soricelli A, Nicoletti GF, Napoli C. Soft drinks and sweeteners intake: Possible contribution to the development of metabolic syndrome and cardiovascular diseases. Beneficial or detrimental action of alternative sweeteners? Food Res Int 2021; 142:110220. [PMID: 33773688 DOI: 10.1016/j.foodres.2021.110220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
The rapid increase in obesity, metabolic syndrome, and cardiovascular diseases (CVDs) has been related to the rise in sugar-added foods and sweetened beverages consumption. An interesting approach has been to replace sugar with alternative sweeteners (AS), due to their impact on public health. Preclinical and clinical studies, which analyze the safety of AS intake, are still limited. Major pathogenic mechanisms of these substances include ROS and AGEs formation. Indeed, endothelial dysfunction involving in the pathogenesis of micro- and macro-vascular diseases is mitochondrial dysfunction dependent. Hyperglycemia and endoplasmic reticulum stress together produce ROS, contributing to the development and progression of cardiovascular complications during type 2 diabetes (T2D), thus causing oxidative changes and direct damage of lipids, proteins, and DNA. Epidemiological studies in healthy subjects have suggested that the consumption of artificial AS can promote CV complications, such as glucose intolerance and predisposition to the onset of T2D, whereas natural AS could reduce hyperglycemia, improve lipid metabolism and have antioxidant effects. Long-term prospective clinical randomized studies are needed to evaluate precisely whether exposure to alternative sugars can have clinical implications on natural history and clinical outcomes, especially in children or during the gestational period through breast milk.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "L. Vanvitelli", Naples, Italy.
| | | | - Michele Scognamiglio
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Naples, Italy
| | - Dario Costa
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy; Department of Exercise and Wellness Sciences, University of Naples Parthenope, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "L. Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Naples, Italy
| |
Collapse
|
11
|
Sato K, Nagai N, Yamamoto T, Mitamura K, Taga A. Correction: Sato, K., et al. Identification of a Novel Oligosaccharide in Maple Syrup as a Potential Alternative Saccharide for Diabetes Mellitus Patients. Int. J. Mol. Sci. 2019, 20, 5041. Int J Mol Sci 2020; 21:ijms21145159. [PMID: 32708261 PMCID: PMC7404319 DOI: 10.3390/ijms21145159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
The authors wish to make the following corrections to this paper [...]
Collapse
|