1
|
Xin S, Hua Y, Li J, Dai X, Yang X, Udayabhanu J, Huang H, Huang T. Comparative analysis of latex transcriptomes reveals the potential mechanisms underlying rubber molecular weight variations between the Hevea brasiliensis clones RRIM600 and Reyan7-33-97. BMC PLANT BIOLOGY 2021; 21:244. [PMID: 34051757 PMCID: PMC8164328 DOI: 10.1186/s12870-021-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The processabilities and mechanical properties of natural rubber depend greatly on its molecular weight (MW) and molecular weight distribution (MWD). However, the mechanisms underlying the regulation of molecular weight during rubber biosynthesis remain unclear. RESULTS In the present study, we determined the MW and particle size of latex from 1-year-old virgin trees and 30-year-old regularly tapped trees of the Hevea clones Reyan7-33-97 and RRIM600. The results showed that both the MW and the particle size of latex varied between these two clones and increased with tree age. Latex from RRIM600 trees had a smaller average particle size than that from Reyan7-33-97 trees of the same age. In 1-year-old trees, the Reyan7-33-97 latex displayed a slightly higher MW than that of RRIM600, whereas in 30-year-old trees, the RRIM600 latex had a significantly higher MW than the Reyan7-33-97 latex. Comparative analysis of the transcriptome profiles indicated that the average rubber particle size is negatively correlated with the expression levels of rubber particle associated proteins, and that the high-MW traits of latex are closely correlated with the enhanced expression of isopentenyl pyrophosphate (IPP) monomer-generating pathway genes and downstream allylic diphosphate (APP) initiator-consuming non-rubber pathways. By bioinformatics analysis, we further identified a group of transcription factors that potentially regulate the biosynthesis of IPP. CONCLUSIONS Altogether, our results revealed the potential regulatory mechanisms involving gene expression variations in IPP-generating pathways and the non-rubber isoprenoid pathways, which affect the ratios and contents of IPP and APP initiators, resulting in significant rubber MW variations among same-aged trees of the Hevea clones Reyan7-33-97 and RRIM600. Our findings provide a better understanding of rubber biosynthesis and lay the foundation for genetic improvement of rubber quality in H. brasiliensis.
Collapse
Affiliation(s)
- Shichao Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Yuwei Hua
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Ji Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xuemei Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xianfeng Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Jinu Udayabhanu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Huasun Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| | - Tiandai Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| |
Collapse
|
2
|
Habib MAH, Ismail MN. Hevea brasiliensis latex proteomics: a review of analytical methods and the way forward. JOURNAL OF PLANT RESEARCH 2021; 134:43-53. [PMID: 33108557 DOI: 10.1007/s10265-020-01231-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Natural rubber or latex from the Hevea brasiliensis is an important commodity in various economic sectors in today's modern society. Proteins have been detected in latex since the early twentieth century, and they are known to regulate various biological pathways within the H. brasiliensis trees such as the natural rubber biosynthesis, defence against pathogens, wound healing, and stress tolerance. However, the exact mechanisms of the pathways are still not clear. Proteomic analyses on latex have found various proteins and revealed how they fit into the mechanisms of the biological pathways. In the past three decades, there has been rapid latex protein identification due to the improvement of latex protein extraction methods, as well as the emergence of two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). In this manuscript, we reviewed the methods of latex protein extraction that keeps on improving over the past three decades as well as the results of numerous latex protein identification and quantitation.
Collapse
Affiliation(s)
- Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Yuan B, Ding G, Ma J, Wang L, Yu L, Ruan X, Zhang X, Zhang W, Wang X, Xie Q. Comparison of Morphological Characteristics and Determination of Different Patterns for Rubber Particles in Dandelion and Different Rubber Grass Varieties. PLANTS 2020; 9:plants9111561. [PMID: 33202722 PMCID: PMC7696596 DOI: 10.3390/plants9111561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
Russian dandelion Taraxacum kok-saghyz (TKS) is one promising alternative crop for natural rubber production. However, it is easily confused with other dandelions. In this study, we performed a systematical comparison of the morphological characteristics for different TKS varieties and common dandelion Taraxacum officinale (TO). Our results demonstrated that several obvious differences in morphology can be found between TKS and TO. TO leaf is a pinnate shape, its margin is heavily jagged and its base is cuneate, but TKS leaf is more cuneate and its leaf margin is nearly smooth and round. There are obvious differences for the outer bracts of TO and TKS flower buds. TKS bracts are oblanceolate, apex obtuse, margin smooth and sinuate, and its outer layer of flower buds and faceplate involucre sepal is buckled inward to form a certain angle. TKS is self-incompatible, and its seeds are spindle-shaped achene and show upright plumpness. A large amount of laticifer cells and rubber particles can be detected from many TKS tissues, and dry roots of TKS contain high contents of natural rubber. Laticifer cells and rubber particles can only be examined in the vein, stem, and roots of TKS. Our statical results also revealed that the numbers of laticifer cells and rubber particles have a positive relationship with the rubber content in TKS roots. These morphological features can help us to easily distinguish TKS from common dandelion and approximately estimate the rubber content in the roots of different TKS varieties for TKS breeding in future.
Collapse
Affiliation(s)
- Boxuan Yuan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Guohua Ding
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Junjun Ma
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Lingling Wang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Li Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Xueyu Ruan
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Xueyan Zhang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agricultural College, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China;
| | - Xuchu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
- Correspondence: (X.W.); (Q.X.); Tel.: +86-898-65891065 (Q.X.)
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
- The Key Laboratory of Oasis Eco-Agriculture, Agricultural College, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China;
- Correspondence: (X.W.); (Q.X.); Tel.: +86-898-65891065 (Q.X.)
| |
Collapse
|
4
|
Identification and Characterization of Glycoproteins and Their Responsive Patterns upon Ethylene Stimulation in the Rubber Latex. Int J Mol Sci 2020; 21:ijms21155282. [PMID: 32722428 PMCID: PMC7432319 DOI: 10.3390/ijms21155282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such as phosphorylation, glycosylation and ubiquitination, are crucial in natural rubber biosynthesis. In this study, comparative proteomics was performed to identify the glycosylated proteins in rubber latex treated with ethylene for different days. Combined with Pro-Q Glycoprotein gel staining and mass spectrometry techniques, we provided the first visual profiling of glycoproteomics of rubber latex and finally identified 144 glycosylated protein species, including 65 differentially accumulated proteins (DAPs) after treating with ethylene for three and/or five days. Gene Ontology (GO) functional annotation showed that these ethylene-responsive glycoproteins are mainly involved in cell parts, membrane components and metabolism. Pathway analysis demonstrated that these glycosylated rubber latex proteins are mainly involved in carbohydrate metabolism, energy metabolism, degradation function and cellular processes in rubber latex metabolism. Protein-protein interaction analysis revealed that these DAPs are mainly centered on acetyl-CoA acetyltransferase and hydroxymethylglutaryl-CoA synthase (HMGS) in the mevalonate pathway for natural rubber biosynthesis. In our glycoproteomics, three protein isoforms of HMGS2 were identified from rubber latex, and only one HMGS2 isoform was sharply increased in rubber latex by ethylene treatment for five days. Furthermore, the HbHMGS2 gene was over-expressed in a model rubber-producing grass Taraxacum Kok-saghyz and rubber content in the roots of transgenic rubber grass was significantly increased over that in the wild type plant, indicating HMGS2 is the key component for natural rubber production.
Collapse
|