1
|
Manaithiya A, Bhowmik R, Acharjee S, Sharma S, Kumar S, Imran M, Mathew B, Parkkila S, Aspatwar A. Elucidating molecular mechanism and chemical space of chalcones through biological networks and machine learning approaches. Comput Struct Biotechnol J 2024; 23:2811-2836. [PMID: 39045026 PMCID: PMC11263914 DOI: 10.1016/j.csbj.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural network-based research for developing effective drugs against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor design and hold promise for drug development. Future research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Satarupa Acharjee
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore 560043, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Health Sciences Campus, Kochi, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Khalifa A, Anwar MM, Alshareef WA, El-Gebaly EA, Elseginy SA, Abdelwahed SH. Design, Synthesis, and Antimicrobial Evaluation of New Thiopyrimidine-Benzenesulfonamide Compounds. Molecules 2024; 29:4778. [PMID: 39407706 PMCID: PMC11477697 DOI: 10.3390/molecules29194778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker M1-25. The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains. All the tested compounds showed promising broad-spectrum antimicrobial efficacy, especially against K. pneumoniae and P. aeruginosa. Furthermore, the most promising compounds, 6M, 19M, 20M, and 25M, were subjected to minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. In addition, the antivirulence activity of the compounds was also examined using multiple biofilm assays. The new compounds promisingly revealed the suppression of microbial biofilm formation in the examined K. pneumoniae and P. aeruginosa microbial isolates. Additionally, in silico ADMET studies were conducted to determine their oral bioavailability, drug-likeness characteristics, and human toxicity risks. It is suggested that new pyrimidine-benzenesulfonamide derivatives may serve as model compounds for the further optimization and development of new antimicrobial and antisepsis candidates.
Collapse
Affiliation(s)
- Abdalrahman Khalifa
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Walaa A. Alshareef
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Eman A. El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, O6U, Giza P.O. Box 12585, Egypt; (W.A.A.); (E.A.E.-G.)
| | - Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt;
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
3
|
Giovannuzzi S, Shyamal SS, Bhowmik R, Ray R, Manaithiya A, Carta F, Parrkila S, Aspatwar A, Supuran CT. Physiological modeling of the metaverse of the Mycobacterium tuberculosis β-CA inhibition mechanism. Comput Biol Med 2024; 181:109029. [PMID: 39173489 DOI: 10.1016/j.compbiomed.2024.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Tuberculosis (TB) is an infectious disease that primarily affects the lungs of humans and accounts for Mycobacterium tuberculosis (Mtb) bacteria as the etiologic agent. In this study, we introduce a computational framework designed to identify the important chemical features crucial for the effective inhibition of Mtb β-CAs. Through applying a mechanistic model, we elucidated the essential features pivotal for robust inhibition. Using this model, we engineered molecules that exhibit potent inhibitory activity and introduce relevant novel chemistry. The designed molecules were prioritized for synthesis based on their predicted pKi values via the QSAR (Quantitative Structure-Activity Relationship) model. All the rationally designed and synthesized compounds were evaluated in vitro against different carbonic anhydrase isoforms expressed from the pathogen Mtb; moreover, the off-target and widely human-expressed CA I and II were also evaluated. Among the reported derivatives, 2, 4, and 5 demonstrated the most valuable in vitro activity, resulting in promising candidates for the treatment of TB infection. All the synthesized molecules exhibited favorable pharmacokinetic and toxicological profiles based on in silico predictions. Docking analysis confirmed that the zinc-binding groups bind effectively into the catalytic triad of the Mtb β-Cas, supporting the in vitro outcomes with these binding interactions. Furthermore, molecules with good prediction accuracies according to previously established mechanistic and QSAR models were utilized to delve deeper into the realm of systems biology to understand their mechanism in combating tuberculotic pathogenesis. The results pointed to the key involvement of the compounds in modulating immune responses via NF-κβ1, SRC kinase, and TNF-α to modulate granuloma formation and clearance via T cells. This dual action, in which the pathogen's enzyme is inhibited while modulating the human immune machinery, represents a paradigm shift toward more effective and comprehensive treatment approaches for combating tuberculosis.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Seppo Parrkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Manaithiya A, Bhowmik R, Bhattacharya K, Ray R, Shyamal SS, Carta F, Supuran CT, Parkkila S, Aspatwar A. A cheminformatics and network pharmacology approach to elucidate the mechanism of action of Mycobacterium tuberculosis γ-carbonic anhydrase inhibitors. Front Pharmacol 2024; 15:1457012. [PMID: 39286631 PMCID: PMC11402817 DOI: 10.3389/fphar.2024.1457012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) carbonic anhydrases (CAs) are critical enzymes that regulate pH by converting CO2 to HCO3 -, essential for Mtb's survival in acidic environments. Inhibiting γ-CAs presents a potential target for novel antituberculosis drugs with unique mechanisms of action. Objective This study aimed to explore the biological connections underlying Mtb pathogenesis and investigate the mechanistic actions of antituberculosis compounds targeting the Cas9 protein. Methods We employed homology modeling and virtual screening to identify compounds with high binding affinities for Cas9 protein. This study used the homology modeling approach employing high-quality AlphaFold DB models for γ-CA. Furthermore, the systems biology approach was used for analyzing the integrated modelling of compounds, integrating data on genes, pathways, phenotypes, and molecular descriptors. Single-cell RNA sequencing was also conducted to profile gene expression. Results Three compounds, F10921405, F08060425, and F14437079, potentially binding to Cas9 protein, have been identified. F10921405 and F08060425 showed significant overlap in their effects on pathways related to the immune response, while F14437079 displayed distinct mechanistic pathways. Expression profiling revealed high levels of genes such as PDE4D, ROCK2, ITK, MAPK10, and SYK in response to F1092-1405 and F0806-0425, and MMP2 and CALCRL in response to F1443-7079. These genes, which play a role in immune modulation and lung tissue integrity, are essential to fight against Mtb. Conclusion The molecular relationship and pathways linked to the mentioned compounds give the study a holistic perspective of targeting Mtb, which is essential in designing specific therapeutic approaches. Subsequent research will involve experimental validation to demonstrate the efficacy of the promising candidates in Mtb infections.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Enzymes 2024; 55:343-381. [PMID: 39222997 DOI: 10.1016/bs.enz.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), is still a major global health problem. According to the World Health Organization (WHO), TB still causes more deaths worldwide than any other infectious agent. Drug-sensitive TB is treatable using first-line drugs; treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB requires second- and third-line drugs. However, due to the long duration of treatment, the noncompliance of patients with different levels of resistance of Mtb to these drugs has worsened the situation. Previously developed anti-TB drugs targeted the replication machinery, protein synthesis, and cell wall biosynthesis pathways of Mtb. Therefore, novel drugs targeting alternate pathways crucial for the survival and pathogenesis of Mtb in the human host are needed. The genome of Mtb encodes three β-carbonic anhydrases (CAs) that are fundamental for pH homeostasis, hypoxia, survival, and pathogenesis. Recently, several studies have shown that the β-CAs of Mtb could be inhibited both in vitro and in vivo using small chemical molecules, suggesting that these enzymes could be novel targets for developing anti-TB compounds that are devoid of resistance by Mtb. In addition, homologs of β-CAs are absent in humans; therefore, drugs developed to target these enzymes might have minimal off-target effects. In this work, we describe the roles of β-CAs in Mtb and discuss bioinformatics and cheminformatics tools used in development and discovery of novel inhibitors of these enzymes. In addition, we summarize the in vitro and in vivo studies demonstrating that the β-CAs of Mtb are indeed druggable targets.
Collapse
Affiliation(s)
- Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd. and Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
6
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Bua S, Bonardi A, Mük GR, Nocentini A, Gratteri P, Supuran CT. Benzothiadiazinone-1,1-Dioxide Carbonic Anhydrase Inhibitors Suppress the Growth of Drug-Resistant Mycobacterium tuberculosis Strains. Int J Mol Sci 2024; 25:2584. [PMID: 38473830 DOI: 10.3390/ijms25052584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
2H-Benzo[e][1,2,4]thiadiazin-3(4H)-one 1,1-dioxide (BTD) based carbonic anhydrase (CA) inhibitors are here explored as new anti-mycobacterial agents. The chemical features of BTD derivatives meet the criteria for a potent inhibition of β-class CA isozymes. BTD derivatives show chemical features meeting the criteria for a potent inhibition of β-class CA isozymes. Specifically, three β-CAs (MtCA1, MtCA2, and MtCA3) were identified in Mycobacterium tuberculosis and their inhibition was shown to exert an antitubercular action. BTDs derivatives 2a-q effectively inhibited the mycobacterial CAs, especially MtCA2 and MtCA3, with Ki values up to a low nanomolar range (MtCA3, Ki = 15.1-2250 nM; MtCA2, Ki = 38.1-4480 nM) and with a significant selectivity ratio over the off-target human CAs I and II. A computational study was conducted to elucidate the compound structure-activity relationship. Importantly, the most potent MtCA inhibitors demonstrated efficacy in inhibiting the growth of M. tuberculosis strains resistant to both rifampicin and isoniazid-standard reference drugs for Tuberculosis treatment.
Collapse
Affiliation(s)
- Silvia Bua
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania
| | - Alessandro Bonardi
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania
- St. Stephen's Pneumoftiziology Hospital, Șoseaua Ștefan cel Mare 11, 020122 Bucharest, Romania
| | - Alessio Nocentini
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSA, Neurofarba Department, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
8
|
Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, Atiya A, Elhassan GO, Alfadly SO, Parkkila S, Aspatwar A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann Med 2024; 55:2295398. [PMID: 38165919 PMCID: PMC10769134 DOI: 10.1080/07853890.2023.2295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Background: Brucellosis is a pervasive zoonotic disease caused by various Brucella species. It mainly affects livestock and wildlife and poses significant public health threats, especially in regions with suboptimal hygiene, food safety, and veterinary care standards. Human contractions occur by consuming contaminated animal products or interacting with infected animals. Objective: This study aims to provide an updated understanding of brucellosis, from its epidemiology and pathogenesis to diagnosis and treatment strategies. It emphasizes the importance of ongoing research, knowledge exchange, and interdisciplinary collaboration for effective disease control and prevention, highlighting its global health implications. Methods: Pathogenesis involves intricate interactions between bacteria and the host immune system, resulting in chronic infections characterized by diverse clinical manifestations. The diagnostic process is arduous owing to non-specific symptomatology and sampling challenges, necessitating a fusion of clinical and laboratory evaluations, including blood cultures, serological assays, and molecular methods. Management typically entails multiple antibiotics, although the rise in antibiotic-resistant Brucella strains poses a problem. Animal vaccination is a potential strategy to curb the spread of infection, particularly within livestock populations. Results: The study provides insights into the complex pathogenesis of brucellosis, the challenges in its diagnosis, and the management strategies involving antibiotic therapy and animal vaccination. It also highlights the emerging issue of antibiotic-resistant Brucella strains. Conclusions: In conclusion, brucellosis is a significant zoonotic disease with implications for public health. Efforts should be directed towards improved diagnostic methods, antibiotic stewardship to combat antibiotic resistance, and developing and implementing effective animal vaccination programs. Interdisciplinary collaboration and ongoing research are crucial for addressing the global health implications of brucellosis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Applied Health Science, Galala University, Suez, Egypt
| | - Bassant H. Abdel Hady
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Shweta Kumar
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Anusmita Ganguly
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Saeed O. Alfadly
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
9
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
10
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
11
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Bhowmik R, Kant R, Manaithiya A, Saluja D, Vyas B, Nath R, Qureshi KA, Parkkila S, Aspatwar A. Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study. Front Pharmacol 2023; 14:1265573. [PMID: 37705534 PMCID: PMC10495588 DOI: 10.3389/fphar.2023.1265573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023] Open
Abstract
Mycobacterium tuberculosis is the bacterial strain that causes tuberculosis (TB). However, multidrug-resistant and extensively drug-resistant tuberculosis are significant obstacles to effective treatment. As a result, novel therapies against various strains of M. tuberculosis have been developed. Drug development is a lengthy procedure that includes identifying target protein and isolation, preclinical testing of the drug, and various phases of a clinical trial, etc., can take decades for a molecule to reach the market. Computational approaches such as QSAR, molecular docking techniques, and pharmacophore modeling have aided drug development. In this review article, we have discussed the various techniques in tuberculosis drug discovery by briefly introducing them and their importance. Also, the different databases, methods, approaches, and software used in conducting QSAR, pharmacophore modeling, and molecular docking have been discussed. The other targets targeted by these techniques in tuberculosis drug discovery have also been discussed, with important molecules discovered using these computational approaches. This review article also presents the list of drugs in a clinical trial for tuberculosis found drugs. Finally, we concluded with the challenges and future perspectives of these techniques in drug discovery.
Collapse
Affiliation(s)
- Ratul Bhowmik
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ravi Kant
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Bharti Vyas
- Department of Bioinformatics, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ranajit Nath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Al-Qassim, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
13
|
Degiacomi G, Gianibbi B, Recchia D, Stelitano G, Truglio GI, Marra P, Stamilla A, Makarov V, Chiarelli LR, Manetti F, Pasca MR. CanB, a Druggable Cellular Target in Mycobacterium tuberculosis. ACS OMEGA 2023; 8:25209-25220. [PMID: 37483251 PMCID: PMC10357428 DOI: 10.1021/acsomega.3c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023]
Abstract
Treatment against tuberculosis can lead to the selection of drug-resistant Mycobacterium tuberculosis strains. To tackle this serious threat, new targets from M. tuberculosis are needed to develop novel effective drugs. In this work, we aimed to provide a possible workflow to validate new targets and inhibitors by combining genetic, in silico, and enzymological approaches. CanB is one of the three M. tuberculosis β-carbonic anhydrases that catalyze the reversible reaction of CO2 hydration to form HCO3- and H+. To this end, we precisely demonstrated that CanB is essential for the survival of the pathogen in vitro by constructing conditional mutants. In addition, to search for CanB inhibitors, conditional canB mutants were also constructed using the Pip-ON system. By molecular docking and minimum inhibitory concentration assays, we selected three molecules that inhibit the growth in vitro of M. tuberculosis wild-type strain and canB conditional mutants, thus implementing a target-to-drug approach. The lead compound also showed a bactericidal activity by the time-killing assay. We further studied the interactions of these molecules with CanB using enzymatic assays and differential scanning fluorimetry thermal shift analysis. In conclusion, the compounds identified by the in silico screening proved to have a high affinity as CanB ligands endowed with antitubercular activity.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Beatrice Gianibbi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Deborah Recchia
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giovanni Stelitano
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | | | - Paola Marra
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Alessandro Stamilla
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Vadim Makarov
- Bakh
Institute of Biochemistry, Russian Academy
of Science, Moscow 119071, Russia
| | - Laurent Robert Chiarelli
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Fabrizio Manetti
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Maria Rosalia Pasca
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
- Fondazione
IRCCS Policlinico San Matteo, Pavia 27100, Italy
| |
Collapse
|
14
|
Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets 2023; 27:897-910. [PMID: 37747071 DOI: 10.1080/14728222.2023.2263914] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Four different genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) are present in bacteria, α-, β-, γ- and ι-CAs. They play relevant functions related to CO2, HCO3-/H+ ions homeostasis, being involved in metabolic biosynthetic pathways, pH regulation, and represent virulence and survival factors for bacteria in various niches. Bacterial CAs started to be considered druggable targets in the last decade, as their inhibition impairs survival, growth, and virulence of these pathogens. AREAS COVERED Significant advances were registered in the last years for designing effective inhibitors of sulfonamide type for Helicobacter pylori α-CA, Neisseria gonorrhoeae α-CA, vacomycin-resistant enterococci (VRE) α- and γ-CAs, for which the in vivo validation has also been achieved. MIC-s in the range of 0.25-4.0 µg/mL for wild type and drug resistant N. gonorrhoeae strains, and of 0.007-2.0 µg/mL for VRE were observed for some 1,3,4-thiadiazole-2-sulfonamides, and acetazolamide was effective in gut decolonization from VRE. EXPERT OPINION Targeting bacterial CAs from other pathogens, among which Vibrio cholerae, Mycobacterium tuberculosis, Brucella suis, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Porphyromonas gingivalis, Clostridium perfringens, Streptococcus mutans, Burkholderia pseudomallei, Francisella tularensis, Escherichia coli, Mammaliicoccus (Staphylococcus) sciuri, Pseudomonas aeruginosa, may lead to novel antibacterials devoid of drug resistance problems.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
15
|
Irfan A, Faisal S, Zahoor AF, Noreen R, Al-Hussain SA, Tuzun B, Javaid R, Elhenawy AA, Zaki MEA, Ahmad S, Abdellattif MH. In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals (Basel) 2023; 16:829. [PMID: 37375776 DOI: 10.3390/ph16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 1,3,4-oxadiazole are privileged and versatile heterocyclic pharmacophores which display a broad spectrum of biological and pharmacological therapeutic potential against a wide variety of diseases. This article reports in silico CADD (computer-aided drug design) and molecular hybridization approaches for the evaluation of the chemotherapeutic efficacy of 16 S-linked N-phenyl acetamide moiety containing benzofuran-1,3,4-oxadiazole scaffolds BF1-BF16. This virtual screening was carried out to discover and assess the chemotherapeutic efficacy of BF1-BF16 structural motifs as Mycobacterium tuberculosis polyketide synthase 13 (Mtb Pks13) enzyme inhibitors. The CADD study results revealed that the benzofuran clubbed oxadiazole derivatives BF3, BF4, and BF8 showed excellent and remarkably significant binding energies against the Mtb Pks13 enzyme comparable with the standard benzofuran-based TAM-16 inhibitor. The best binding affinity scores were displayed by 1,3,4-oxadiazoles-based benzofuran scaffolds BF3 (-14.23 kcal/mol), BF4 (-14.82 kcal/mol), and BF8 (-14.11 kcal/mol), in comparison to the binding affinity score of the standard reference TAM-16 drug (-14.61 kcal/mol). 2,5-Dimethoxy moiety-based bromobenzofuran-oxadiazole derivative BF4 demonstrated the highest binding affinity score amongst the screened compounds, and was higher than the reference Pks13 inhibitor TAM-16 drug. The bindings of these three leads BF3, BF4, and BF8 were further confirmed by the MM-PBSA investigations in which they also exhibited strong bindings with the Pks13 of Mtb. Moreover, the stability analysis of these benzofuran-1,3,4-oxadiazoles in the active sites of the Pks13 enzyme was achieved through molecular dynamic (MD) simulations at 250 ns virtual simulation time, which indicated that these three in silico predicted bio-potent benzofuran tethered oxadiazole molecules BF3, BF4, and BF8 demonstrated stability with the active site of the Pks13 enzyme.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Burak Tuzun
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Rakshanda Javaid
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Chemistry Department, Faculty of Science and Art, AlBaha University, Mukhwah, Al Bahah 65731, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
16
|
Abdoli M, Bonardi A, Paoletti N, Aspatwar A, Parkkila S, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules 2023; 28:molecules28104020. [PMID: 37241761 DOI: 10.3390/molecules28104020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A library of structurally diverse N-((4-sulfamoylphenyl)carbamothioyl) amides was synthesized by selective acylation of easily accessible 4-thioureidobenzenesulfonamide with various aliphatic, benzylic, vinylic and aromatic acyl chlorides under mild conditions. Inhibition of three α-class cytosolic human (h) carbonic anhydrases (CAs) (EC 4.2.1.1); that is, hCA I, hCA II and hCA VII and three bacterial β-CAs from Mycobacterium tuberculosis (MtCA1-MtCA3) with these sulfonamides was thereafter investigated in vitro and in silico. Many of the evaluated compounds displayed better inhibition against hCA I (KI = 13.3-87.6 nM), hCA II (KI = 5.3-384.3 nM), and hCA VII (KI = 1.1-13.5 nM) compared with acetazolamide (AAZ) as the control drug (KI values of 250, 12.5 and 2.5 nM, respectively, against hCA I, hCA II and hCA VII). The mycobacterial enzymes MtCA1 and MtCA2 were also effectively inhibited by these compounds. MtCA3 was, on the other hand, poorly inhibited by the sulfonamides reported here. The most sensitive mycobacterial enzyme to these inhibitors was MtCA2 in which 10 of the 12 evaluated compounds showed KIs (KI, the inhibitor constant) in the low nanomolar range.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Niccolò Paoletti
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| |
Collapse
|
17
|
Capasso C. Carbonic Anhydrases: A Superfamily of Ubiquitous Enzymes. Int J Mol Sci 2023; 24:ijms24087014. [PMID: 37108175 PMCID: PMC10138334 DOI: 10.3390/ijms24087014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous physiological and pathological cellular processes depend on the ability [...].
Collapse
Affiliation(s)
- Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council (CNR), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
18
|
Gautam S, Qureshi KA, Jameel Pasha SB, Dhanasekaran S, Aspatwar A, Parkkila S, Alanazi S, Atiya A, Khan MMU, Venugopal D. Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030541. [PMID: 36978408 PMCID: PMC10044459 DOI: 10.3390/antibiotics12030541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) and a significant health concern worldwide. The main threat to the elimination of TB is the development of resistance by MTB to the currently used antibiotics and more extended treatment methods, which is a massive burden on the health care system. As a result, there is an urgent need to identify new, effective therapeutic strategies with fewer adverse effects. The traditional medicines found in South Asia and Africa have a reservoir of medicinal plants and plant-based compounds that are considered another reliable option for human beings to treat various diseases. Abundant research is available for the biotherapeutic potential of naturally occurring compounds in various diseases but has been lagging in the area of TB. Plant-based compounds, or phytoproducts, are being investigated as potential anti-mycobacterial agents by reducing bacterial burden or modulating the immune system, thereby minimizing adverse effects. The efficacy of these phytochemicals has been evaluated through drug delivery using nanoformulations. This review aims to emphasize the value of anti-TB compounds derived from plants and provide a summary of current research on phytochemicals with potential anti-mycobacterial activity against MTB. This article aims to inform readers about the numerous potential herbal treatment options available for combatting TB.
Collapse
Affiliation(s)
- Silvi Gautam
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (D.V.)
| | | | - Sugapriya Dhanasekaran
- Department of Molecular Analytics, Institute of Bioinformatics, SSE-SIMATS, Chennai 602105, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Samyah Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Divya Venugopal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, India
- Correspondence: (K.A.Q.); (D.V.)
| |
Collapse
|
19
|
Ratrey P, Datta B, Mishra A. Intracellular Bacterial Targeting by a Thiazolyl Benzenesulfonamide and Octaarginine Peptide Complex. ACS APPLIED BIO MATERIALS 2022; 5:3257-3268. [PMID: 35736131 DOI: 10.1021/acsabm.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A brominated thiazolyl benzenesulfonamide (BTB) derivative is conjugated with the cell-penetrating peptide octaarginine (R8) in an effort to construct innovative antibacterial products. The noncovalent complex of BTB and R8 is characterized by Fourier transform infrared (FTIR) spectroscopy, which indicates hydrogen bonding between the two constituents. Attachment of the peptide moiety renders aqueous solubility to the hydrophobic benzenesulfonamide drug and bestows bactericidal activity. Confocal imaging in conjunction with dye probes shows successful clearance of intracellular Staphylococcus aureus bacteria by the BTB-R8 complex. Scanning electron micrographs and studies with a set of fluorescent dyes suggest active disruption of the bacterial cell membrane by the BTB-R8 complex. In contrast, the complex of BTB with octalysine (K8) fails to cause membrane damage and displays a modest antibacterial effect. A complex of BTB with the water-soluble hydrophilic polymer poly(vinylpyrrolidone) (PVP) does not display any antibacterial effect, indicating the distinctive role of the cell-penetrating peptide (CPP) R8 in the cognate complex. The leakage of the encapsulated dye from giant unilamellar vesicles upon interaction with the BTB-R8 complex further highlights the membrane activity of the complex, which cannot be accomplished by bare sulfonamide alone. This work broadens the scope of use of CPPs with respect to eliciting antibacterial activity and potentially expands the limited arsenal of membrane-targeting antibiotics.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
20
|
The production and biochemical characterization of α-carbonic anhydrase from Lactobacillus rhamnosus GG. Appl Microbiol Biotechnol 2022; 106:4065-4074. [PMID: 35612631 PMCID: PMC9200688 DOI: 10.1007/s00253-022-11990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Abstract
We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, β, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only β- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s−1 and kcat/KM of 1.41 × 107 s−1 M−1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. Key points • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.
Collapse
|
21
|
Abutaleb NS, Elhassanny AEM, Seleem MN. In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microb Pathog 2022; 164:105454. [PMID: 35189278 PMCID: PMC8923983 DOI: 10.1016/j.micpath.2022.105454] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Gonococcal infections represent an urgent public health threat worldwide due to the increasing incidence of infections that has been accompanied by an increase in bacterial resistance to most antibiotics. This has resulted in a dwindling number of effective treatment options. Undoubtedly, there is a critical need to develop new, effective anti-gonococcal agents. In an effort to discover new anti-gonococcal therapeutics, we previously identified acetazolamide, a carbonic anhydrase inhibitor, as a novel inhibitor of Neisseria gonorrhoeae. Acetazolamide exhibited potent anti-gonococcal activity in vitro as it inhibited growth of strains of N. gonorrhoeae at concentrations that ranged from 0.5 to 4 μg/mL. The aim of this study was to investigate the in vivo efficacy of acetazolamide in a mouse model of N. gonorrhoeae genital tract infection. Compared to vehicle-treated mice, acetazolamide significantly reduced the gonococcal burden by 90% in the vagina of infected mice after three days of treatment. These results indicate that acetazolamide warrants further investigation as a promising treatment option to supplement the limited pipeline of anti-gonococcal therapeutics.
Collapse
Affiliation(s)
- Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmed E. M. Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA,Corresponding Author: Mohamed N. Seleem, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA, Phone: 540-231-2703,
| |
Collapse
|
22
|
Selective Inhibition of Helicobacter pylori Carbonic Anhydrases by Carvacrol and Thymol Could Impair Biofilm Production and the Release of Outer Membrane Vesicles. Int J Mol Sci 2021; 22:ijms222111583. [PMID: 34769015 PMCID: PMC8584244 DOI: 10.3390/ijms222111583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori, a Gram-negative neutrophilic pathogen, is the cause of chronic gastritis, peptic ulcers, and gastric cancer in humans. Current therapeutic regimens suffer from an emerging bacterial resistance rate and poor patience compliance. To improve the discovery of compounds targeting bacterial alternative enzymes or essential pathways such as carbonic anhydrases (CAs), we assessed the anti-H. pylori activity of thymol and carvacrol in terms of CA inhibition, isoform selectivity, growth impairment, biofilm production, and release of associated outer membrane vesicles-eDNA. The microbiological results were correlated by the evaluation in vitro of H. pylori CA inhibition, in silico analysis of the structural requirements to display such isoform selectivity, and the assessment of their limited toxicity against three probiotic species with respect to amoxicillin. Carvacrol and thymol could thus be considered as new lead compounds as alternative H. pylori CA inhibitors or to be used in association with current drugs for the management of H. pylori infection and limiting the spread of antibiotic resistance.
Collapse
|
23
|
Urbanski LJ, Vullo D, Parkkila S, Supuran CT. An anion and small molecule inhibition study of the β-carbonic anhydrase from Staphylococcus aureus. J Enzyme Inhib Med Chem 2021; 36:1088-1092. [PMID: 34056990 PMCID: PMC8168783 DOI: 10.1080/14756366.2021.1931863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogenic bacteria resistant to most antibiotics, including the methicillin-resistant Staphylococcus aureus (MRSA) represent a serious medical problem. The search for new antiinfectives, possessing a diverse mechanism of action compared to the clinically used antibiotics, has become an attractive research field. S. aureus DNA encodes a β-class carbonic anhydrase, SauBCA. It is a druggable target that can be inhibited by certain aromatic and heterocyclic sulphonamides. Here we investigated inorganic anions and some other small molecules for their inhibition of SauBCA. The halides, nitrite, nitrate, bicarbonate, carbonate, bisulphite, sulphate, stannate, and N,N-diethyldithiocarbamate were submillimolar SauBCA inhibitors with KIs in the range of 0.26 − 0.91 mM. The most effective inhibitors were sulfamide, sulfamate, phenylboronic acid, and phenylarsonic acid with KIs of 7 − 43 µM. Several interesting inhibitors detected here may be considered lead compounds for the development of even more effective derivatives, which should be investigated for their bacteriostatic effects.
Collapse
Affiliation(s)
- Linda J Urbanski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniela Vullo
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
24
|
Nocentini A, Hewitt CS, Mastrolorenzo MD, Flaherty DP, Supuran CT. Anion inhibition studies of the α-carbonic anhydrases from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2021; 36:1061-1066. [PMID: 34030562 PMCID: PMC8158254 DOI: 10.1080/14756366.2021.1929202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae encodes for an α-class carbonic anhydrase (CA, EC 4.2.1.1), NgCA, which was investigated for its inhibition with a series of inorganic and organic anions. Perchlorate and hexafluorophosphate did not significantly inhibit NgCA CO2 hydrase activity, whereas the halides, azide, bicarbonate, carbonate, stannate, perosmate, diphosphate, divanadate, perruthenate, and trifluoromethanesulfonate showed inhibition constants in the range of 1.3–9.6 mM. Anions/small molecules such as cyanate, thiocyanate, nitrite, nitrate, bisulphite, sulphate, hydrogensulfide, phenylboronic acid, phenylarsonic acid, selenate, tellurate, tetraborate, perrhenate, peroxydisulfate, selenocyanate, iminodisulfonate, and fluorosulfonate showed KIs in the range of 0.15–1.0 mM. The most effective inhibitors detected in this study were sulfamide, sulfamate, trithiocarbonate and N,N-diethyldithiocarbamate, which had KIs in the range of 5.1–88 µM. These last compounds incorporating the CS2- zinc-binding group may be used as leads for developing even more effective NgCA inhibitors in addition to the aromatic/heterocyclic sulphonamides, as this enzyme was recently validated as an antibacterial drug target for obtaining novel antigonococcal agents
Collapse
Affiliation(s)
- Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Margaret D Mastrolorenzo
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy.,University of California, San Diego (UCSD), San Diego, CA, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021; 135:1233-1249. [PMID: 34013961 DOI: 10.1042/cs20210040] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) was clinically exploited for decades, as most modern diuretics were obtained considering as lead molecule acetazolamide, the prototypical CA inhibitor (CAI). The discovery and characterization of multiple human CA (hCA) isoforms, 15 of which being known today, led to new applications of their inhibitors. They include widely clinically used antiglaucoma, antiepileptic and antiobesity agents, antitumor drugs in clinical development, as well as drugs for the management of acute mountain sickness and idiopathic intracranial hypertension (IIH). Emerging roles of several CA isoforms in areas not generally connected to these enzymes were recently documented, such as in neuropathic pain, cerebral ischemia, rheumatoid arthritis, oxidative stress and Alzheimer's disease. Proof-of-concept studies thus emerged by using isoform-selective inhibitors, which may lead to new clinical applications in such areas. Relevant preclinical models are available for these pathologies due to the availability of isoform-selective CAIs for all human isoforms, belonging to novel classes of compounds, such as coumarins, sulfocoumarins, dithiocarbamates, benzoxaboroles, apart the classical sulfonamide inhibitors. The inhibition of CAs from pathogenic bacteria, fungi, protozoans or nematodes started recently to be considered for obtaining anti-infectives with a new mechanism of action.
Collapse
|
26
|
Akgul O, Angeli A, Selleri S, Capasso C, Supuran CT, Carta F. Taurultams incorporating arylsulfonamide: First in vitro inhibition studies of α-, β- and γ-class Carbonic Anhydrases from Vibrio cholerae and Burkholderia pseudomallei. Eur J Med Chem 2021; 219:113444. [PMID: 33866238 DOI: 10.1016/j.ejmech.2021.113444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
A new series of taurultambenzenesulfonamides 1-17 were prepared and considered for their inhibitory activity in vitro against the Carbonic Anhydrases from Vibrio cholerae (VchCA-α, VchCA-β and VchCA-γ) and Burkholderia pseudomallei (BpsCA-β and BpsCA-γ). Among the compounds tested, derivatives 4, 5, 7, 10, 12, and 16 resulted in highly effective VchCAα inhibitors (KI values spanning within the 6.1-9.6 nM range) and endowed with excellent Selectivity Indexes (SIs; KI VchCA-α/KI hCA II) all comprised between 0.04 and 0.09. Potent in vitro inhibitors for the BpsCA-γ were also identified (KIs of 18.9-19.5 nM). The results here reported may represent the blueprint for the future development of a new generation of CA-based antibiotics integrated with free of resistance mechanisms of action adopted from known drugs.
Collapse
Affiliation(s)
- Ozlem Akgul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers - "Petru Poni", Institute of Macromolecular Chemistry, 700487, Iasi, Romania.
| | - Silvia Selleri
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
27
|
Murthy V, Tamboli Y, Krishna VS, Sriram D, Zhang FX, Zamponi GW, Vijayakumar V. Synthesis and Biological Evaluation of Novel Benzhydrylpiperazine-Coupled Nitrobenzenesulfonamide Hybrids. ACS OMEGA 2021; 6:9731-9740. [PMID: 33869953 PMCID: PMC8047747 DOI: 10.1021/acsomega.1c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 05/15/2023]
Abstract
A series of novel benzhydryl piperazine-coupled nitrobenzenesulfonamide hybrids were synthesized with good to excellent yields. They were tested for in vitro inhibition of mycobacterial activity against the Mycobacterium tuberculosis H37Rv strain, in vitro cytotoxicity MTT (RAW 264.7cells) assay, nutrient starvation (H37Rv strain), and ability to block Cav3.2 T-type calcium channels. Novel hybrids did not inhibit T-type calcium channels, whereas they showed excellent antituberculosis (TB) activity and low cytotoxicity with a selectivity index of >30. A direct impact of the amino acid linker was not observed. Studied hybrids exhibited good inhibition activities, and the 2,4-dinitrobenzenesulfonamide group emerged as a promising scaffold for further drug design by hybridization approaches for anti-TB therapy.
Collapse
Affiliation(s)
- Vallabhaneni
S. Murthy
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| | - Yasinalli Tamboli
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| | - Vagolu Siva Krishna
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Dharmarajan Sriram
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Fang Xiong Zhang
- Department
of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss
Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department
of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss
Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vijayaparthasarathi Vijayakumar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
- . Phone: +91-416-2202535, 9443916746. Fax: +91-4162243092
| |
Collapse
|
28
|
In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO 2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. Int J Mol Sci 2021; 22:ijms22062861. [PMID: 33799806 PMCID: PMC8000050 DOI: 10.3390/ijms22062861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.
Collapse
|
29
|
De Luca V, Petreni A, Nocentini A, Scaloni A, Supuran CT, Capasso C. Effect of Sulfonamides and Their Structurally Related Derivatives on the Activity of ι-Carbonic Anhydrase from Burkholderia territorii. Int J Mol Sci 2021; 22:ijms22020571. [PMID: 33430028 PMCID: PMC7827628 DOI: 10.3390/ijms22020571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Carbonic anhydrases (CAs) are essential metalloenzymes in nature, catalyzing the carbon dioxide reversible hydration into bicarbonate and proton. In humans, breathing and many other critical physiological processes depend on this enzymatic activity. The CA superfamily function and inhibition in pathogenic bacteria has recently been the object of significant advances, being demonstrated to affect microbial survival/virulence. Targeting bacterial CAs may thus be a valid alternative to expand the pharmacological arsenal against the emergence of widespread antibiotic resistance. Here, we report an extensive study on the inhibition profile of the recently discovered ι-CA class present in some bacteria, including Burkholderia territorii, namely BteCAι, using substituted benzene-sulfonamides and clinically licensed sulfonamide-, sulfamate- and sulfamide-type drugs. The BteCAι inhibition profile showed: (i) several benzene-sulfonamides with an inhibition constant lower than 100 nM; (ii) a different behavior with respect to other α, β and γ-CAs; (iii) clinically used drugs having a micromolar affinity. This prototype study contributes to the initial recognition of compounds which efficiently and selectively inhibit a bacterial member of the ι-CA class, for which such a selective inhibition with respect to other protein isoforms present in the host is highly desired and may contribute to the development of novel antimicrobials.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, via Pietro Castellino 111, 80131 Napoli, Italy;
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, via Argine 1085, 80147 Napoli, Italy;
| | - Andrea Petreni
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, via Argine 1085, 80147 Napoli, Italy;
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, via Pietro Castellino 111, 80131 Napoli, Italy;
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
30
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|
31
|
Biocatalytic CO 2 Absorption and Structural Studies of Carbonic Anhydrase under Industrially-Relevant Conditions. Int J Mol Sci 2020; 21:ijms21082918. [PMID: 32331206 PMCID: PMC7215295 DOI: 10.3390/ijms21082918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
The unprecedently high CO2 levels in the atmosphere evoke the urgent need for development of technologies for mitigation of its emissions. Among the alternatives, the biocatalytic route has been claimed as one of the most promising. In the present work, the carbonic anhydrase from bovine erythrocytes (BCA) was employed as a model enzyme for structural studies in an aqueous phase at alkaline pH, which is typical of large-scale absorption processes under operation. Circular dichroism (CD) analysis revealed a high enzymatic stability at pH 10 with a prominent decrease of the melting temperature above this value. The CO2 absorption capacity of the aqueous solutions were assessed by online monitoring of pressure decay in a stainless-steel cell, which indicated a better performance at pH 10 with a kinetic rate increase of up to 43%, as compared to non-biocatalytic conditions. Even low enzyme concentrations (0.2 mg g-1) proved to be sufficient to improve the overall CO2 capture process performance. The enzyme-enhanced approach of CO2 capture presents a high potential and should be further studied.
Collapse
|
32
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|
33
|
Angeli A, Pinteala M, Maier SS, Simionescu BC, Milaneschi A, Abbas G, del Prete S, Capasso C, Capperucci A, Tanini D, Carta F, Supuran CT. Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. Int J Mol Sci 2020; 21:E598. [PMID: 31963423 PMCID: PMC7014678 DOI: 10.3390/ijms21020598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
A series of 2-thio- and 2-seleno-acetamides bearing the benzenesulfonamide moiety were evaluated as Carbonic Anhydrase (CA, EC 4.2.1.1) inhibitors against different pathogenic bacteria such as the Vibrio cholerae (VchCA-α and VchCA-β), Burkholderia pseudomallei (BpsCA-β and BpsCA-γ), Mycobacterium tuberculosis (Rv3723-β) and the Salmonella enterica serovar Typhimurium (StCA2-β). The molecules represent interesting leads worth developing as innovative antibacterial agents since they possess new mechanism of action and isoform selectivity preferentially against the bacterial expressed CAs. The identification of potent and selective inhibitors of bacterial CAs may lead to tools also useful for deciphering the physiological role(s) of such proteins.
Collapse
Affiliation(s)
- Andrea Angeli
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
- Polymeric Release Systems Research Group, Polymers Research Center, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Andrea Milaneschi
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, University of Nizwa, Birkat Al-Mauz, P.O.Box 33, Nizwa-616, Sultanate of Oman;
| | - Sonia del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Fabrizio Carta
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Claudiu T. Supuran
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| |
Collapse
|