1
|
Nygaard A, Zachariassen LG, Larsen KS, Kristensen AS, Loland CJ. Fluorescent non-canonical amino acid provides insight into the human serotonin transporter. Nat Commun 2024; 15:9267. [PMID: 39463388 PMCID: PMC11514162 DOI: 10.1038/s41467-024-53584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The serotonin transporter (SERT), responsible for the reuptake of released serotonin, serves as a major target for antidepressants and psychostimulants. Nevertheless, refining the mechanistic models for SERT remains challenging. Here, we expand the molecular understanding of the binding of ions, substrates, and inhibitors to SERT by incorporating the fluorescent non-canonical amino acid Anap through genetic code expansion. We elucidate steady-state changes in conformational dynamics of purified SERT with Anap inserted at intracellular- or extracellular sites. This uncovers the competitive mechanisms underlying cation binding and assigns distinct binding- and allosteric coupling patterns for several inhibitors and substrates. Finally, we track in real-time conformational transitions in response to the interaction with Na+ or serotonin. In this work, we present a methodological platform reporting on SERT conformational dynamics, which together with other approaches will deepen our insights into the molecular mechanisms of SERT.
Collapse
Affiliation(s)
- Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine S Larsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Awtrey NC, Beckstein O. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. J Chem Theory Comput 2024; 20:7646-7666. [PMID: 39160681 PMCID: PMC11530140 DOI: 10.1021/acs.jctc.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Kinetic diagrams are commonly used to represent biochemical systems in order to study phenomena such as free energy transduction and ion selectivity. While numerical methods are commonly used to analyze such kinetic networks, the diagram method by King, Altman and Hill makes it possible to construct exact algebraic expressions for steady-state observables in terms of the rate constants of the kinetic diagram. However, manually obtaining these expressions becomes infeasible for models of even modest complexity as the number of the required intermediate diagrams grows with the factorial of the number of states in the diagram. We developed Kinetic Diagram Analysis (KDA), a Python library that programmatically generates the relevant diagrams and expressions from a user-defined kinetic diagram. KDA outputs symbolic expressions for state probabilities and cycle fluxes at steady-state that can be symbolically manipulated and evaluated to quantify macroscopic system observables. We demonstrate the KDA approach for examples drawn from the biophysics of active secondary transmembrane transporters. For a generic 6-state antiporter model, we show how the introduction of a single leakage transition reduces transport efficiency by quantifying substrate turnover. We apply KDA to a real-world example, the 8-state free exchange model of the small multidrug resistance transporter EmrE of Hussey et al. (J. Gen. Physiol., 2020, 152, e201912437), where a change in transporter phenotype is achieved by biasing two different subsets of kinetic rates: alternating access and substrate unbinding rates. KDA is made available as open source software under the GNU General Public License version 3.
Collapse
Affiliation(s)
- Nikolaus Carl Awtrey
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Carl Awtrey N, Beckstein O. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596119. [PMID: 38854140 PMCID: PMC11160680 DOI: 10.1101/2024.05.27.596119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Kinetic diagrams are commonly used to represent biochemical systems in order to study phenomena such as free energy transduction and ion selectivity. While numerical methods are commonly used to analyze such kinetic networks, the diagram method by King, Altman and Hill makes it possible to construct exact algebraic expressions for steady-state observables in terms of the rate constants of the kinetic diagram. However, manually obtaining these expressions becomes infeasible for models of even modest complexity as the number of the required intermediate diagrams grows with the factorial of the number of states in the diagram. We developed Kinetic Diagram Analysis (KDA), a Python library that programmatically generates the relevant diagrams and expressions from a user-defined kinetic diagram. KDA outputs symbolic expressions for state probabilities and cycle fluxes at steady-state that can be symbolically manipulated and evaluated to quantify macroscopic system observables. We demonstrate the KDA approach for examples drawn from the biophysics of active secondary transmembrane transporters. For a generic 6-state antiporter model, we show how the introduction of a single leakage transition reduces transport efficiency by quantifying substrate turnover. We apply KDA to a real-world example, the 8-state free exchange model of the small multidrug resistance transporter EmrE of Hussey et al (J General Physiology 152 (2020), e201912437), where a change in transporter phenotype is achieved by biasing two different subsets of kinetic rates: alternating access and substrate unbinding rates. KDA is made available as open source software under the GNU General Public License version 3.
Collapse
Affiliation(s)
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| |
Collapse
|
4
|
Bhatt M, Gauthier-Manuel L, Lazzarin E, Zerlotti R, Ziegler C, Bazzone A, Stockner T, Bossi E. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front Physiol 2023; 14:1145973. [PMID: 37123280 PMCID: PMC10137170 DOI: 10.3389/fphys.2023.1145973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl-, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
| | - Laure Gauthier-Manuel
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
| | - Rocco Zerlotti
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Christine Ziegler
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | | | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| |
Collapse
|
5
|
Ben Mariem O, Saporiti S, Guerrini U, Laurenzi T, Palazzolo L, Indiveri C, Barile M, De Fabiani E, Eberini I. In silico investigation on structure-function relationship of members belonging to the human SLC52 transporter family. Proteins 2022; 91:619-633. [PMID: 36511838 DOI: 10.1002/prot.26453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Riboflavin is an essential water-soluble vitamin that needs to be provided through the diet because of the conversion into flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), important cofactors in hundreds of flavoenzymes. The adsorption and distribution of riboflavin is mediated by transmembrane transporters of the SLC52 family, namely RFVT1-3, whose mutations are mainly associated with two diseases, MADD and the Brown-Vialetto-Van Laere syndrome. Interest in RFVTs as pharmacological targets has increased in the last few years due to their overexpression in several cancer cells, which can be exploited both by blocking the uptake of riboflavin into the cancerous cells, and by performing cancer targeted delivery of drugs with a high affinity for RFVTs. In this work, we propose three-dimensional structural models for all three human riboflavin transporters obtained by state-of-the-art artificial intelligence-based methods, which were then further refined with molecular dynamics simulations. Furthermore, two of the most notable mutations concerning RFVT2 and RFVT3 (W31S and N21S, respectively) were investigated studying the interactions between the wild-type and mutated transporters with riboflavin.
Collapse
Affiliation(s)
- Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.,Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, Arcavacata di Rende, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A.Moro, Bari, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy.,DSRC, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Spreacker PJ, Thomas NE, Beeninga WF, Brousseau M, Porter CJ, Hibbs KM, Henzler-Wildman KA. Activating alternative transport modes in a multidrug resistance efflux pump to confer chemical susceptibility. Nat Commun 2022; 13:7655. [PMID: 36496486 PMCID: PMC9741644 DOI: 10.1038/s41467-022-35410-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Small multidrug resistance (SMR) transporters contribute to antibiotic resistance through proton-coupled efflux of toxic compounds. Previous biophysical studies of the E. coli SMR transporter EmrE suggest that it should also be able to perform proton/toxin symport or uniport, leading to toxin susceptibility rather than resistance in vivo. Here we show EmrE does confer susceptibility to several previously uncharacterized small-molecule substrates in E. coli, including harmane. In vitro electrophysiology assays demonstrate that harmane binding triggers uncoupled proton flux through EmrE. Assays in E. coli are consistent with EmrE-mediated dissipation of the transmembrane pH gradient as the mechanism underlying the in vivo phenotype of harmane susceptibility. Furthermore, checkerboard assays show this alternative EmrE transport mode can synergize with some existing antibiotics, such as kanamycin. These results demonstrate that it is possible to not just inhibit multidrug efflux, but to activate alternative transport modes detrimental to bacteria, suggesting a strategy to address antibiotic resistance.
Collapse
Affiliation(s)
- Peyton J Spreacker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Will F Beeninga
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Colin J Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Kylie M Hibbs
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA
| | - Katherine A Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53703, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53703, USA.
| |
Collapse
|
7
|
New Insights on Heme Uptake in Leishmania spp. Int J Mol Sci 2022; 23:ijms231810501. [PMID: 36142411 PMCID: PMC9504327 DOI: 10.3390/ijms231810501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania, responsible for leishmaniasis, is one of the few aerobic organisms that cannot synthesize the essential molecule heme. Therefore, it has developed specialized pathways to scavenge it from its host. In recent years, some proteins involved in the import of heme, such as LHR1 and LFLVCRB, have been identified, but relevant aspects regarding the process remain unknown. Here, we characterized the kinetics of the uptake of the heme analogue Zn(II) Mesoporphyrin IX (ZnMP) in Leishmania major promastigotes as a model of a parasite causing cutaneous leishmaniasis with special focus on the force that drives the process. We found that ZnMP uptake is an active, inducible, and pH-dependent process that does not require a plasma membrane proton gradient but requires the presence of the monovalent cations Na+ and/or K+. In addition, we demonstrated that this parasite can efflux this porphyrin against a concentration gradient. We also found that ZnMP uptake differs among different dermotropic or viscerotropic Leishmania species and does not correlate with LHR1 or LFLVCRB expression levels. Finally, we showed that these transporters have only partially overlapping functions. Altogether, these findings contribute to a deeper understanding of an important process in the biology of this parasite.
Collapse
|
8
|
Farr CV, El-Kasaby A, Erdem FA, Sucic S, Freissmuth M, Sandtner W. Cooperative Binding of Substrate and Ions Drives Forward Cycling of the Human Creatine Transporter-1. Front Physiol 2022; 13:919439. [PMID: 35837012 PMCID: PMC9273935 DOI: 10.3389/fphys.2022.919439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Creatine serves as an ATP buffer and is thus an integral component of cellular energy metabolism. Most cells maintain their creatine levels via uptake by the creatine transporter (CRT-1, SLC6A8). The activity of CRT-1, therefore, is a major determinant of cytosolic creatine concentrations. We determined the kinetics of CRT-1 in real time by relying on electrophysiological recordings of transport-associated currents. Our analysis revealed that CRT-1 harvested the concentration gradient of NaCl and the membrane potential but not the potassium gradient to achieve a very high concentrative power. We investigated the mechanistic basis for the ability of CRT-1 to maintain the forward cycling mode in spite of high intracellular concentrations of creatine: this is achieved by cooperative binding of substrate and co-substrate ions, which, under physiological ion conditions, results in a very pronounced (i.e. about 500-fold) drop in the affinity of creatine to the inward-facing state of CRT-1. Kinetic estimates were integrated into a mathematical model of the transport cycle of CRT-1, which faithfully reproduced all experimental data. We interrogated the kinetic model to examine the most plausible mechanistic basis of cooperativity: based on this systematic exploration, we conclude that destabilization of binary rather than ternary complexes is necessary for CRT-1 to maintain the observed cytosolic creatine concentrations. Our model also provides a plausible explanation why neurons, heart and skeletal muscle cells must express a creatine releasing transporter to achieve rapid equilibration of the intracellular creatine pool.
Collapse
Affiliation(s)
| | | | | | | | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
9
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
10
|
Schicker K, Farr CV, Boytsov D, Freissmuth M, Sandtner W. Optimizing the Substrate Uptake Rate of Solute Carriers. Front Physiol 2022; 13:817886. [PMID: 35185619 PMCID: PMC8850955 DOI: 10.3389/fphys.2022.817886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity in solute carriers arose from evolutionary pressure. Here, we surmised that the adaptive search for optimizing the rate of substrate translocation was also shaped by the ambient extracellular and intracellular concentrations of substrate and co-substrate(s). We explored possible solutions by employing kinetic models, which were based on analytical expressions of the substrate uptake rate, that is, as a function of the microscopic rate constants used to parameterize the transport cycle. We obtained the defining terms for five reaction schemes with identical transport stoichiometry (i.e., Na+: substrate = 2:1). We then utilized an optimization algorithm to find the set of numeric values for the microscopic rate constants, which provided the largest value for the substrate uptake rate: The same optimized rate was achieved by different sets of numerical values for the microscopic rate constants. An in-depth analysis of these sets provided the following insights: (i) In the presence of a low extracellular substrate concentration, a transporter can only cycle at a high rate, if it has low values for both, the Michaelis-Menten constant (KM) for substrate and the maximal substrate uptake rate (Vmax). (ii) The opposite is true for a transporter operating at high extracellular substrate concentrations. (iii) Random order of substrate and co-substrate binding is superior to sequential order, if a transporter is to maintain a high rate of substrate uptake in the presence of accumulating intracellular substrate. Our kinetic models provide a framework to understand how and why the transport cycles of closely related transporters differ.
Collapse
Affiliation(s)
| | | | | | | | - Walter Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Thomas NE, Feng W, Henzler-Wildman KA. A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport. J Biol Chem 2021; 297:101220. [PMID: 34562455 PMCID: PMC8517846 DOI: 10.1016/j.jbc.2021.101220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Collapse
Affiliation(s)
- Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
12
|
Extracellular loops of the serotonin transporter act as a selectivity filter for drug binding. J Biol Chem 2021; 297:100863. [PMID: 34118233 PMCID: PMC8253976 DOI: 10.1016/j.jbc.2021.100863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388–400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.
Collapse
|
13
|
Bhat S, Niello M, Schicker K, Pifl C, Sitte HH, Freissmuth M, Sandtner W. Handling of intracellular K + determines voltage dependence of plasmalemmal monoamine transporter function. eLife 2021; 10:67996. [PMID: 34061030 PMCID: PMC8192120 DOI: 10.7554/elife.67996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K+ gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP+(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Division of Neurophysiology and Neuropharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 2021; 48:1683-1696. [PMID: 32779723 PMCID: PMC7458394 DOI: 10.1042/bst20200164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Membrane transporters control the movement and distribution of solutes, including the disposal or compartmentation of toxic substances that accumulate in plants under adverse environmental conditions. In this minireview, in the light of the approaching 100th anniversary of unveiling the significance of boron to plants (K. Warington, 1923; Ann. Bot.37, 629) we discuss the current state of the knowledge on boron transport systems that plants utilise to combat boron toxicity. These transport proteins include: (i) nodulin-26-like intrinsic protein-types of aquaporins, and (ii) anionic efflux (borate) solute carriers. We describe the recent progress made on the structure–function relationships of these transport proteins and point out that this progress is integral to quantitative considerations of the transporter's roles in tissue boron homeostasis. Newly acquired knowledge at the molecular level has informed on the transport mechanics and conformational states of boron transport systems that can explain their impact on cell biology and whole plant physiology. We expect that this information will form the basis for engineering transporters with optimised features to alleviate boron toxicity tolerance in plants exposed to suboptimal soil conditions for sustained food production.
Collapse
|
15
|
Szöllősi D, Stockner T. Investigating the Mechanism of Sodium Binding to SERT Using Direct Simulations. Front Cell Neurosci 2021; 15:673782. [PMID: 34040506 PMCID: PMC8141550 DOI: 10.3389/fncel.2021.673782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The serotonin transporter (SERT) terminates neurotransmission by transporting serotonin from the synapse into the pre-synaptic nerve terminal. Altered SERT function leads to several neurological diseases including depression, anxiety, mood disorders, and attention deficit hyperactivity disorders (ADHD). Accordingly SERT is the target for their pharmacological treatments, but also targeted by multiple drugs of abuse. Transport of serotonin by SERT is energized by the transmembrane electrochemical gradient of sodium. We used extensive molecular dynamics simulations to investigate the process of sodium binding to SERT, which is the first step in the transport cycle that leads to serotonin uptake. Comparing data from 51 independent simulations, we find a remarkably well-defined path for sodium entry and could identify two transient binding sites, while observing binding kinetics that are comparable to experimental data. Importantly, the structure and dynamics of the sodium binding sites indicate that sodium binding is accompanied by an induced-fit mechanism that leads to new conformations and reduces local dynamics.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Schicker K, Bhat S, Farr C, Burtscher V, Horner A, Freissmuth M, Sandtner W. Descriptors of Secondary Active Transporter Function and How They Relate to Partial Reactions in the Transport Cycle. MEMBRANES 2021; 11:178. [PMID: 33802510 PMCID: PMC8001282 DOI: 10.3390/membranes11030178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Plasmalemmal solute carriers (SLCs) gauge and control solute abundance across cellular membranes. By virtue of this action, they play an important role in numerous physiological processes. Mutations in genes encoding the SLCs alter amino acid sequence that often leads to impaired protein function and onset of monogenic disorders. To understand how these altered proteins cause disease, it is necessary to undertake relevant functional assays. These experiments reveal descriptors of SLC function such as the maximal transport velocity (Vmax), the Michaelis constant for solute uptake (KM), potencies for inhibition of transporter function (IC50/EC50), and many more. In several instances, the mutated versions of different SLC transporters differ from their wild-type counterparts in the value of these descriptors. While determination of these experimental parameters can provide conjecture as to how the mutation gives rise to disease, they seldom provide any definitive insights on how a variant differ from the wild-type transporter in its operation. This is because the experimental determination of association between values of the descriptors and several partial reactions a transporter undergoes is casual, but not causal, at best. In the present study, we employ kinetic models that allow us to derive explicit mathematical terms and provide experimental descriptors as a function of the rate constants used to parameterize the kinetic model of the transport cycle. We show that it is possible to utilize these mathematical expressions to deduce, from experimental outcomes, how the mutation has impinged on partial reactions in the transport cycle.
Collapse
Affiliation(s)
- Klaus Schicker
- Center for Physiology and Pharmacology, Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shreyas Bhat
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Clemens Farr
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Verena Burtscher
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| |
Collapse
|
17
|
Elevator-type mechanisms of membrane transport. Biochem Soc Trans 2021; 48:1227-1241. [PMID: 32369548 PMCID: PMC7329351 DOI: 10.1042/bst20200290] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.
Collapse
|
18
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|