1
|
Żurek N, Świeca M, Kapusta IT. Berries, Leaves, and Flowers of Six Hawthorn Species ( Crataegus L.) as a Source of Compounds with Nutraceutical Potential. Molecules 2024; 29:5786. [PMID: 39683943 DOI: 10.3390/molecules29235786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Designing new forms of food, food additives, and nutraceuticals is necessary due to the growing needs of consumers, as well as the inflammation of civilization diseases, the prevention and treatment of which can be significantly supported by dietary intervention. For this reason, this study aimed to obtain highly bioactive preparations in the form of powders from the fruits, leaves, and flowers of six species of hawthorn (Crataegus L.) using solid phase extraction (SPE). Ultra-performance liquid chromatography analysis (UPLC-PDA-MS/MS) showed a high concentration of phenolic compounds (in the range from 31.50 to 66.06 mg/g), including the highest concentration in hawthorn fruit preparations. Fruit preparations also showed the highest antioxidant activity (through scavenging of O2˙- and OH˙ radicals), antidiabetic activity (inhibition of α-amylase and α-glucosidase), and anticancer activity, mainly against colon cancer cells (Caco-2). At the same time, hawthorn flower preparations showed the highest biocompatibility against normal colon cells (CCD841CoN) and anti-inflammatory activity (trypsin inhibition). Correlation and principal component analysis (PCA) showed that the health-promoting potential was most influenced by the content of falavan-3-ols. The above findings provide a basis for the industrial use of the developed preparations, which is in line with the current trend in food technology related to the search for new sources of bioactive compounds and the design of highly bioactive food.
Collapse
Affiliation(s)
- Natalia Żurek
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Michał Świeca
- Department of Food Chemistry and Biochemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland
| | - Ireneusz Tomasz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
2
|
Antioxidant and Antibacterial Properties of Extracts and Bioactive Compounds in Bryophytes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today global health problems such as increased risks of oxidative stress-related diseases and antibiotic resistance are issues of serious concern. Oxidative stress is considered to be the underlying cause of many contemporary pathological conditions such as neurological disorders, ischemia, cancer, etc. Antibiotic-resistant bacteria are a concerning issue in clinical practice, causing an increase in deadly infections. Bryophytes synthesize an outstanding number of secondary metabolites that have shown several potential therapeutic and nutraceutical applications. Research in the field has led to the isolation and characterization of several compounds (flavonoids, terpenoids, and bibenzyls). Some of these compounds have shown promising in vitro antibacterial activities and antioxidant potential comparable to known natural antioxidants such as ascorbic acid and α-tocopherol. However, the process of developing new drugs from naturally occurring molecules is often an impervious path. In this paper, the current state of research of bryophytic antioxidant and antibacterial applications is discussed.
Collapse
|
3
|
Żurek N, Karatsai O, Rędowicz MJ, Kapusta IT. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021; 26:molecules26092656. [PMID: 34062758 PMCID: PMC8124274 DOI: 10.3390/molecules26092656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Crataegus contains numerous health-promoting compounds that are also proposed to have anti-cancer properties. Herein, we aimed at a contemporaneous evaluation of the effects of polyphenol-rich extracts of berries, leaves, and flowers of six Crataegus species on the viability and invasive potential on the highly aggressive human glioblastoma U87MG cell line. The treatment with the extracts evoked cytotoxic effects, with the strongest in the berry extracts. All extracts not only promoted the apoptosis-related cleavage of poly (ADP-ribose) polymerase 1 (PARP1) but also substantially inhibited the activity of pro-survival kinases, focal adhesion kinase (FAK), and protein kinase B (PKB; also known as Akt), thus indicating the suppression of proliferative and invasive potentials of the examined glioblastoma cells. The qualitative and quantitative characterization of the extracts’ content was also performed and revealed that amongst 37 polyphenolic compounds identified in the examined Crataegus extracts, the majority (29) was detected in berries; the leaf and flower extracts, exerting milder cytotoxic effects, contained only 14 and 13 compounds, respectively. The highest polyphenol content was found in the berries of C. laevigata x rhipidophylla x monogyna, in which flavan-3-ols and phenolic acids predominated. Our results demonstrated that a high content of polyphenolic compounds correlated with the extract cytotoxicity, and especially berries were a valuable source of compounds with anti-cancer potential. This might be a promising option for the development of an effective therapeutic strategy against highly malignant glioblastomas in the future.
Collapse
Affiliation(s)
- Natalia Żurek
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
| | - Olena Karatsai
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland;
| | - Maria Jolanta Rędowicz
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland;
| | - Ireneusz Tomasz Kapusta
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
- Correspondence: ; Tel.: +48-17-785-5238
| |
Collapse
|
4
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
5
|
Ditta LA, Rao E, Provenzano F, Sánchez JL, Santonocito R, Passantino R, Costa MA, Sabatino MA, Dispenza C, Giacomazza D, San Biagio PL, Lapasin R. Agarose/κ-carrageenan-based hydrogel film enriched with natural plant extracts for the treatment of cutaneous wounds. Int J Biol Macromol 2020; 164:2818-2830. [PMID: 32853619 DOI: 10.1016/j.ijbiomac.2020.08.170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process.
Collapse
Affiliation(s)
- Lorena Anna Ditta
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Estella Rao
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Fiorenza Provenzano
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Jesús Lozano Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; Center of Research and Development of Functional Food, Health Science Technological Park, Av.da del Conocimiento s/n, 18100 Granada, Spain
| | - Radha Santonocito
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Maria Assunta Costa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy.
| | - Maria Antonietta Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy
| | - Clelia Dispenza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy; Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy.
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy.
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, 90146 Palermo, Italy
| | - Romano Lapasin
- Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Piazzale Europa, 34127 Trieste, Italy
| |
Collapse
|