1
|
Chinnathambi A, Ali Alharbi S, Hussein-Al-Ali SH, Abudoleh SM, Surya P, Bharathi M, Palanisamy A. Biofabrication of bimetallic selenium@zinc nanoparticles using Champia parvula aqueous extract: Investigation of anticancer activity and its apoptosis induction. Biochem Biophys Res Commun 2024; 733:150417. [PMID: 39047428 DOI: 10.1016/j.bbrc.2024.150417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Selenium@zinc nanoparticles, or Se@Zn NPs, are extensively employed in various environmental, industrial and biological domains. However, the biological potential of Se@Zn NPs has not been thoroughly investigated. This study focused on fabricating Se@Zn NPs from algae using an aqueous extract of Champia parvula seaweed. Analytical techniques were used to describe the successfully synthesized Se@Zn NPs. In addition, a biological function analysis of the Se@Zn NPs was conducted. The Ultraviolet-visible spectroscopy (UV-vis) spectrum showed a specific absorbance peak for the Se@Zn NPs at 350-400 nm. The biomolecules involved in forming Se@Zn NPs were identified by their potential functional groups, as revealed by Fourier transform infrared spectroscopy (FTIR). By scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Se@Zn NPs were shown to be spherical and to have a diameter range of 100-200 nm. NPs with a crystallite diameter of 54.8 nm and chemical compositions of zinc and selenium (1:1.5 ratio) were revealed by X-ray diffraction analysis (XRD) and energy dispersive x-ray spectroscopy (EDS). IC50 values were determined for the anticancer activity against A549, MCF-7 and HeLa cells. Cell morphological changes in fluorescence microscopy and apoptosis mechanisms by flow cytometry analysis were investigated, which show that Se@Zn NPs induced apoptosis in various cancer cells. DNA fragmentation and ROS levels were studied by fluorescence microscopy. In conclusion, conditions required for therapeutic and preventative applications may be met by the green synthesis of Se@Zn NPs.
Collapse
Affiliation(s)
- Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | | | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Parthasarathy Surya
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Arulselvan Palanisamy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India.
| |
Collapse
|
2
|
Mansouri E, Rajabpour S, Mesbahi A. In silico estimation of polyethylene glycol coating effect on metallic NPs radio-sensitization in kilovoltage energy beams. BMC Chem 2024; 18:206. [PMID: 39439010 PMCID: PMC11515684 DOI: 10.1186/s13065-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Nanoparticles (NPs) as radiosensitizers present a promising strategy for enhancing radiotherapy effectiveness, but their potential is significantly influenced by the properties of their surface coating, which can impact treatment outcomes. Most Monte Carlo studies have focused on metallic NPs without considering the impact of coating layers on radiosensitization. In this study, we aim to assess both the physical and radiobiological effects of nanoparticle coatings in nanoparticle-based radiation therapy. MATERIALS AND METHODS In this simulation study, we used Geant4 Monte Carlo (MC) toolkit (v10.07.p02) and simulated the bismuth, gold, iridium and gadolinium NPs coated with polyethylene glycol (PEG-400: Density: 1.13 g/cm³, Molar mass: 380-420 g/mol) as radiosensitizer for photon beams of 30, 60 and 100 keV. Secondary electron number and reactive oxygen species enhancement factor were estimated. Also, dose enhancement factor (DEF) was determined in spherical shells with logarithmic scale thickness from the nanoparticle surface to 4 mm. RESULTS Secondary electron emission was highest at 30 keV for gold, bismuth, and iridium NPs, while gadolinium NPs peaked at 60 keV. Coating reduced electron emissions across all energies, with thicker coatings leading to a more significant decrease. DEF values declined with increasing radial distance from the NP surface and were lower with thicker coatings. For gadolinium NPs, DEF behavior differed due to K-edge energy effects. Reactive species generation varied, showing maximum production at 30 keV for gold, bismuth, and iridium NPs, while gadolinium NPs showed peak activity at 60 keV. PEG coatings enhanced reactive species formation at 100 keV. CONCLUSION The findings indicate that the coating layer thickness and material not only influence the emission of secondary particles and DEF but also affect the generation of reactive species from water radiolysis. Specifically, thicker coatings reduce secondary particle emission and DEF, while PEG coatings demonstrate a dual behavior, offering both protective and enhancing effects depending on photon energy. These insights underscore the importance of optimizing NP design and coating in future studies to maximize therapeutic efficacy in nanoparticle-based radiation therapy.
Collapse
Affiliation(s)
- Elham Mansouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Rajabpour
- Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Medical Radiation Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Ghorbani Y, Saeedzadeh E, Danafar H, Babapour Mofrad F, Nosrati H. Ag-Pt@BSA bimetallic nanoparticles for breast cancer radiation treatment dose augmentation. J Mol Liq 2024; 409:125472. [DOI: 10.1016/j.molliq.2024.125472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
4
|
Yang X, Porcel E, Marichal L, Gonzalez-Vargas C, Khitous A, Salado-Leza D, Li X, Renault JP, Pin S, Remita H, Wien F, Lacombe S. Human Serum Albumin in the Presence of Small Platinum Nanoparticles. J Pharm Sci 2024; 113:1645-1652. [PMID: 38336007 DOI: 10.1016/j.xphs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Noble metal materials, especially platinum nanoparticles (Pt NPs), have immense potential in nanomedicine as therapeutic agents on account of their high electron density and their high surface area. Intravenous injection is proposed as the best mode to deliver the product to patients. However, our understanding of the reaction of nanoparticles with blood components, especially proteins, is far behind the explosive development of these agents. Using synchrotron radiation circular dichroism (SRCD), we investigated the structural and stability changes of human serum albumin (HSA) upon interaction with PEG-OH coated Pt NPs at nanomolar concentrations, conditions potentially encountered for intravenous injection. There is no strong complexation found between HSA and Pt NPs. However, for the highest molar ratio of NP:HSA of 1:1, an increase of 18 °C in the thermal unfolding of HSA was observed, which is attributed to increased thermal stability of HSA generated by preferential hydration. This work proposes a new and fast method to probe the potential toxicity of nanoparticles intended for clinical use with intravenous injection.
Collapse
Affiliation(s)
- Xiaomin Yang
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Cesar Gonzalez-Vargas
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Amine Khitous
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Daniela Salado-Leza
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; CONAHCYT, Institute of Physics, Autonomous University of San Luis Potosi, 78295 San Luis Potosi, Mexico
| | - Xue Li
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Hynd Remita
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Frank Wien
- Synchrotron Soleil, 91190 Saint-Aubin, France.
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
| |
Collapse
|
5
|
Taheri A, Khandaker MU, Moradi F, Bradley DA. A simulation study on the radiosensitization properties of gold nanorods. Phys Med Biol 2024; 69:045029. [PMID: 38286017 DOI: 10.1088/1361-6560/ad2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
Collapse
Affiliation(s)
- Ali Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Farhad Moradi
- Fibre Optics Research Centre, Faculty of Engineering, Multimedia University, Jalan Multimedia 63100, Cyberjaya, Malaysia
| | - David Andrew Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
6
|
Remita H, Lampre I. Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:364. [PMID: 38255532 PMCID: PMC10817448 DOI: 10.3390/ma17020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
This paper reviews the radiation-induced synthesis of metallic nanostructures and their applications. Radiolysis is a powerful method for synthesizing metallic nanoparticles in solution and heterogeneous media, and it is a clean alternative to other existing physical, chemical, and physicochemical methods. By varying parameters such as the absorbed dose, dose rate, concentrations of metallic precursors, and nature of stabilizing agents, it is possible to control the size, shape, and morphology (alloy, core-shell, etc.) of the nanostructures and, consequently, their properties. Therefore, the as-synthesized nanoparticles have many potential applications in biology, medicine, (photo)catalysis, or energy conversion.
Collapse
Affiliation(s)
| | - Isabelle Lampre
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France;
| |
Collapse
|
7
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
8
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
9
|
Mansouri E, Mesbahi A, Hejazi MS, Montazersaheb S, Tarhriz V, Ghasemnejad T, Zarei M. Nanoscopic biodosimetry using plasmid DNA in radiotherapy with metallic nanoparticles. J Appl Clin Med Phys 2022; 24:e13879. [PMID: 36546569 PMCID: PMC9924121 DOI: 10.1002/acm2.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoscopic lesions (complex damages), are the most lethal lesions for the cells. As nanoparticles have become increasingly popular in radiation therapy and the importance of analyzing nanoscopic dose enhancement has increased, a reliable tool for nanodosimetry has become indispensable. In this regard, the DNA plasmid is a widely used tool as a nanodosimetry probe in radiobiology and nano-radiosensitization studies. This approach is helpful for unraveling the radiosensitization role of nanoparticles in terms of physical and physicochemical effects and for quantifying radiation-induced biological damage. This review discusses the potential of using plasmid DNA assays for assessing the relative effects of nano-radiosensitizers, which can provide a theoretical basis for the development of nanoscopic biodosimetry and nanoparticle-based radiotherapy.
Collapse
Affiliation(s)
- Elham Mansouri
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asghar Mesbahi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran,Medical Physics DepartmentMedical SchoolTabriz University of Medical SciencesTabrizIran
| | - Mohammad Saied Hejazi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Soheila Montazersaheb
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Vahideh Tarhriz
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Tohid Ghasemnejad
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Mojtaba Zarei
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
10
|
Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022; 51:7662-7681. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum nanoparticles (Pt NPs) have a well-established role as a classic heterogeneous catalyst. Also, Pt has traditionally been employed as a component of organometallic drug formulations for chemotherapy. However, a new role in cancer therapy is emerging thanks to its outstanding catalytic properties, enabling novel approaches that are surveyed in this review. Herein, we critically discuss results already obtained and attempt to ascertain future perspectives for Pt NPs as catalysts able to modify key processes taking place in the tumour microenvironment (TME). In addition, we explore relevant parameters affecting the cytotoxicity, biodistribution and clearance of Pt nanosystems. We also analyze pros and cons in terms of biocompatibility and potential synergies that emerge from combining the catalytic capabilities of Pt with other agents such as co-catalysts, external energy sources (near-infrared light, X-ray, electric currents) and conventional therapies.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Bonet-Aleta
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA) CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I + D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain. .,Department of Chemical and Environmental Engineering, University of Zaragoza, Spain, Campus Rio Ebro, C/ María de Luna, 3, 50018 Zaragoza, Spain.,Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
11
|
Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses. Int J Mol Sci 2021; 22:ijms22094436. [PMID: 33922713 PMCID: PMC8123015 DOI: 10.3390/ijms22094436] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
High-Z metallic nanoparticles (NPs) are new players in the therapeutic arsenal against cancer, especially radioresistant cells. Indeed, the presence of these NPs inside malignant cells is believed to enhance the effect of ionizing radiation by locally increasing the dose deposition. In this context, the potential of platinum nanoparticles (PtNPs) as radiosensitizers was investigated in two breast cancer cell lines, T47D and MDA-MB-231, showing a different radiation sensitivity. PtNPs were internalized in the two cell lines and localized in lysosomes and multivesicular bodies. Analyses of cell responses in terms of clonogenicity, survival, mortality, cell-cycle distribution, oxidative stress, and DNA double-strand breaks did not reveal any significant enhancement effect when cells were pre-exposed to PtNPs before being irradiated, as compared to radiation alone. This result is different from that reported in a previous study performed, under the same conditions, on cervical cancer HeLa cells. This shows that the efficacy of radio-enhancement is strongly cell-type-dependent. Simulation of the early stage ionization processes, taking into account the irradiation characteristics and realistic physical parameters in the biological sample, indicated that PtNPs could weakly increase the dose deposition (by 3%) in the immediate vicinity of the nanoparticles. Some features that are potentially responsible for the biological effect could not be taken into account in the simulation. Thus, chemical and biological effects could explain this discrepancy. For instance, we showed that, in these breast cancer cell lines, PtNPs exhibited ambivalent redox properties, with an antioxidant potential which could counteract the radio-enhancement effect. This work shows that the efficacy of PtNPs for enhancing radiation effects is strongly cell-dependent and that no effect is observed in the case of the breast cancer cell lines T47D and MDA-MB-231. Thus, more extensive experiments using other relevant biological models are needed in order to evaluate such combined strategies, since several clinical trials have already demonstrated the success of combining nanoagents with radiotherapy in the treatment of a range of tumor types.
Collapse
|
12
|
Sasireka KS, Lalitha P. Biogenic synthesis of bimetallic nanoparticles and their applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The current advancements in nanotechnology suggest a sustainable development in the green synthesis of bimetallic nanoparticles (BMNPs) through green approaches. Though challenging, nano phyto technology has versatile methods to achieve desired unique properties like optic, electronic, magnetic, therapeutic, and catalytic efficiencies. Bio-inspired, facile synthesis of bifunctional BMNPs is possible using abundant, readily available natural plant sources, bio-mass wastes and microorganisms. Synergistic effects of two different metals on mixing, bring new insight for the vast applications, which is not achievable in using monometallic NPs. By adopting bio-inspired greener approaches for synthesizing NPs, the risk of environmental toxicity caused by conventional physicochemical methods become negligible. This article hopes to provide the significance of cost-effective, one-step, eco-friendly and facile synthesis of noble/transition bimetallic NPs. This review article endows an overview of the bio-mediated synthesis of bimetallic NPs, classifications of BMNPs, current characterization techniques, possible mechanistic aspects for reducing metal ions, and the stability of formed NPs and bio-medical/industrial applications of fabricated NPs. The review also highlights the prospective future direction to improve reliability, reproducibility of biosynthesis methods, its actual mechanism in research works and extensive application of biogenic bimetallic NPs.
Collapse
Affiliation(s)
- Krishnan Sundarrajan Sasireka
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| | - Pottail Lalitha
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| |
Collapse
|
13
|
Salado-Leza D, Porcel E, Yang X, Štefančíková L, Bolsa-Ferruz M, Savina F, Dragoe D, Guerquin-Kern JL, Wu TD, Hirayama R, Remita H, Lacombe S. Green One-Step Synthesis of Medical Nanoagents for Advanced Radiation Therapy. Nanotechnol Sci Appl 2020; 13:61-76. [PMID: 32848371 PMCID: PMC7426062 DOI: 10.2147/nsa.s257392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations. MATERIALS AND METHODS This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement. RESULTS AND DISCUSSION Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations. CONCLUSION This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
- Cátedra CONACyT, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, 78210 San Luis Potosí, Mexico
| | - Erika Porcel
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Xiaomin Yang
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Lenka Štefančíková
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Marta Bolsa-Ferruz
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Farah Savina
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Diana Dragoe
- Université Paris Saclay, CNRS UMR 8182, Institut de Chimie Moléculaire et des Matériaux d’Orsay, 91405 Orsay, France
| | - Jean-Luc Guerquin-Kern
- Paris-Saclay University, Multimodal Imaging Center (UMS 2016/US 43) CNRS, INSERM, Institut Curie, 91405 Orsay, France
| | - Ting-Di Wu
- Paris-Saclay University, Multimodal Imaging Center (UMS 2016/US 43) CNRS, INSERM, Institut Curie, 91405 Orsay, France
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan
| | - Hynd Remita
- Université Paris Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sandrine Lacombe
- Université Paris Saclay, CNRS UMR 8214, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| |
Collapse
|
14
|
Synthesis, self-assembly, sensing methods and mechanism of bio-source facilitated nanomaterials: A review with future outlook. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|