1
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
2
|
Cao G, Ren L, Ma D. Recent Advances in Cell Sheet-Based Tissue Engineering for Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:97-127. [PMID: 37639357 DOI: 10.1089/ten.teb.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In conventional bone tissue engineering, cells are seeded onto scaffolds to create three-dimensional (3D) tissues, but the cells on the scaffolds are unable to effectively perform their physiological functions due to their low density and viability. Cell sheet (CS) engineering is expected to be free from this limitation. CS engineering uses the principles of self-assembly and self-organization of endothelial and mesenchymal stem cells to prepare CSs as building blocks for engineering bone grafts. This process recapitulates the native tissue development, thus attracting significant attention in the field of bone regeneration. However, the method is still in the prebasic experimental stage in bone defect repair. To make the method clinically applicable and valuable in personalized and precision medicine, current research is focused on the preparation of multifunctionalized building blocks using CS technologies, such as 3D layered CSs containing microvascular structures. Considering the great potential of CS engineering in repairing bone defects, in this review, the types of cell technologies are first outlined. We then summarize the various types of CSs as building blocks for engineering bone grafts. Furthermore, the specific applications of CSs in bone repair are discussed. Finally, we present specific suggestions for accelerating the application of CS engineering in the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Guoding Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Orthopaedics, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Liling Ren
- Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
3
|
Chen W, Nie M, Gan J, Xia N, Wang D, Sun L. Tailoring cell sheets for biomedical applications. SMART MEDICINE 2024; 3:e20230038. [PMID: 39188516 PMCID: PMC11235941 DOI: 10.1002/smmd.20230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 08/28/2024]
Abstract
Cell sheet technology has emerged as a novel scaffold-free approach for cell-based therapies in regenerative medicine. Techniques for harvesting cell sheets are essential to preserve the integrity of living cell sheets. This review provides an overview of fundamental technologies to fabricate cell sheets and recent advances in cell sheet-based tissue engineering. In addition to the commonly used temperature-responsive systems, we introduce alternative approaches, such as ROS-induced, magnetic-controlled, and light-induced cell sheet technologies. Moreover, we discuss the modification of the cell sheet to improve its function, including stacking, genetic modification, and vascularization. With the significant advances in cell sheet technology, cell sheets have been widely applied in various tissues and organs, including but not limited to the lung, cornea, cartilage, periodontium, heart, and liver. This review further describes both the preclinical and clinical applications of cell sheets. We believe that the progress in cell sheet technology would further propel its biomedical applications.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Nie
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Nan Xia
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Dandan Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Fan C, He J, Xu S, Yan J, Jin L, Dai J, Hu B. Advances in biomaterial-based cardiac organoids. BIOMATERIALS ADVANCES 2023; 153:213502. [PMID: 37352743 DOI: 10.1016/j.bioadv.2023.213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Cardiovascular disease (CVD) is one of the important causes of death worldwide. The incidence and mortality rates are increasing annually with the intensification of social aging. The efficacy of drug therapy is limited in individuals suffering from severe heart failure due to the inability of myocardial cells to undergo regeneration and the challenging nature of cardiac tissue repair following injury. Consequently, surgical transplantation stands as the most efficient approach for treatment. Nevertheless, the shortage of donors and the considerable number of heart failure patients worldwide, estimated at 26 million, results in an alarming treatment deficit, with only around 5000 heart transplants feasible annually. The existing major alternatives, such as mechanical or xenogeneic hearts, have significant flaws, such as high cost and rejection, and are challenging to implement for large-scale, long-term use. An organoid is a three-dimensional (3D) cell tissue that mimics the characteristics of an organ. The critical application has been rated in annual biotechnology by authoritative journals, such as Science and Cell. Related industries have achieved rapid growth in recent years. Based on this technology, cardiac organoids are expected to pave the way for viable heart repair and treatment and play an essential role in pathological research, drug screening, and other areas. This review centers on the examination of biomaterials employed in cardiac repair, strategies employed for the reconstruction of cardiac structure and function, clinical investigations pertaining to cardiac repair, and the prospective applications of cardiac organoids. From basic research to clinical practice, the current status, latest progress, challenges, and prospects of biomaterial-based cardiac repair are summarized and discussed, providing a reference for future exploration and development of cardiac regeneration strategies.
Collapse
Affiliation(s)
- Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Jiaxiong He
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Sijia Xu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
5
|
You Q, Lu M, Li Z, Zhou Y, Tu C. Cell Sheet Technology as an Engineering-Based Approach to Bone Regeneration. Int J Nanomedicine 2022; 17:6491-6511. [PMID: 36573205 PMCID: PMC9789707 DOI: 10.2147/ijn.s382115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell-cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge from the lab to the clinic.
Collapse
Affiliation(s)
- Qi You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Minxun Lu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuangzhuang Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China,Correspondence: Chongqi Tu; Yong Zhou, Department of Orthopedics, West China Hospital, Sichuan University, No. 37, Guoxuexiang, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
6
|
Smart surface-based cell sheet engineering for regenerative medicine. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Kim SJ, Lee S, Kim C, Shin H. One-step harvest and delivery of micropatterned cell sheets mimicking the multi-cellular microenvironment of vascularized tissue. Acta Biomater 2021; 132:176-187. [PMID: 33571713 DOI: 10.1016/j.actbio.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Techniques for harvest and delivery of cell sheets have been improving for decades. However, cell sheets with complicated patterns closely related to natural tissue architecture were hardly achieved. Here, we developed an efficient method to culture and harvest cell sheets with complex shape (noted as microtissues) using temperature-responsive hydrogel consisting of expandable polyethylene oxide polymer at low temperature. Firstly, a temperature-responsive hydrogel surface with honeycomb patterns (50 and 100 µm in width) were developed through microcontact printing of polydopamine (PD). The human dermal fibroblasts (HDFBs) and human umbilical vein endothelial cells (HUVECs) spontaneously formed honeycomb-shaped microtissues on the patterned hydrogel surface. The microtissues on the hydrogel were able to be harvested and directly delivered to the desired target through thermal expansion of the hydrogel at 4 °C with an efficiency close to 80% within 10 min which is faster than conventional method based on poly(N-isopropylacrylamide). The microtissues maintained their original honeycomb network and intact structures. Honeycomb-patterned cell sheets also were fabricated through serial seeding of various cell lines, including HDFBs, HUVECs, and human adipose-derived stem cells, in which cells were attached along the honeycomb pattern. The underlying honeycomb patterns in the cell sheets were successfully maintained for 3 days, even after delivery. In addition, patterned cell sheets were successfully delivered in vivo while maintaining an intact structure for 7 days. Together, our findings demonstrate that micropatterned temperature-responsive hydrogel is an efficient method of one-step culturing and delivery of complex microtissues and should prove useful in various tissue engineering applications. STATEMENT OF SIGNIFICANCE: Scaffold-free cell delivery techniques, including cell sheet engineering, have been developed for decades. However, there is limited research regarding culture and delivery of microtissues with complex architecture mimicking natural tissue. Herein, we developed a micro-patterned hydrogel platform for the culture and delivery of honeycomb-shaped microtissues. Honeycomb patterns were chemically engineered on the temperature-responsive hydrogel through microcontact printing of polydopamine to selectively allow for human dermal fibroblast or human umbilical vein endothelial cell adhesion. They spontaneously formed honeycomb-shaped microtissues within 24 hr upon cell seeding and directly delivered to various target area including in vivo via thermal expansion of the hydrogel at 4 °C, suggesting that the micro-patterned hydrogel can be an efficient tool for culture and delivery of complex microtissue.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chunggoo Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
9
|
Jiang Z, Zhu D, Yu K, Xi Y, Wang X, Yang G. Recent advances in light-induced cell sheet technology. Acta Biomater 2021; 119:30-41. [PMID: 33144232 DOI: 10.1016/j.actbio.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Various stimuli have been applied to harvest complete cell sheets, including temperature, magnetic, pH, and electrical stimuli. Cell sheet technology is a convenient and efficient approach with beneficial effects for tissue regeneration and cell therapy. Lights of different wavelengths, such as ultraviolet (UV), visible light, and near infrared ray (NIR) light, were confirmed to aid in fabricating a cell sheet. Changes in the wettability, potential, or water content of the culturing surfaces that occur under light illumination induce conformational changes in the adhesive proteins or collagens, which then leads to cell sheet detachment. However, the current approaches face several limitations, as few standards for safe light illumination have been proposed to date, and require a careful control of the wavelength, power, and irradiation time. Future studies should aim at generating new materials for culturing and releasing cell sheets rapidly and effectively.
Collapse
|
10
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Feng YN, Zhang XF. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity. Int J Biol Macromol 2020; 157:267-275. [PMID: 32339584 DOI: 10.1016/j.ijbiomac.2020.04.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/07/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
In this study, Huperzia serrata polysaccharide (HSP) fraction was isolated using response surface methodology (RSM) and Box-Behnken design (BBD). The extraction time, temperature and ratio of water to raw material were employed effects. And properties of four polysaccharide (60%-HSP, 70%-HSP, 80%-HSP and 90%-HSP) were evaluated. The results indicated that the optimal extraction conditions were the following: 3.07 h, 49.46 °C and a liquid material ratio of 20.73:1. The four HSP presented irregular aggregation of shape. And all HSP exhibited antioxidant and anticancer activities.
Collapse
Affiliation(s)
- Yan-Ni Feng
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China.
| |
Collapse
|