1
|
Hu YX, Huang A, Li Y, Molloy DP, Huang C. Emerging roles of the C-to-U RNA editing in plant stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112263. [PMID: 39299521 DOI: 10.1016/j.plantsci.2024.112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
RNA editing is an important post-transcriptional event in all living cells. Within chloroplasts and mitochondria of higher plants, RNA editing involves the deamination of specific cytosine (C) residues in precursor RNAs to uracil (U). An increasing number of recent studies detail specificity of C-to-U RNA editing as an essential prerequisite for several plant stress-related responses. In this review, we summarize the current understanding of responses and functions of C-to-U RNA editing in plants under various stress conditions to provide theoretical reference for future research.
Collapse
Affiliation(s)
- Yu-Xuan Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - An Huang
- College of Communication and Art Design, Swan College, Central South University of Forestry and Technology, Changsha 410128, China.
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Tang B, Yang H, Yin Q, Miao W, Lei Y, Cui Q, Cheng J, Zhang X, Chen Y, Du J, Xie L, Tang S, Wang M, Li J, Cao M, Chen L, Xie F, Li X, Zhu F, Wang Z, Xiong C, Dai X, Zou X, Liu F. Fertility restorer gene CaRf and PepperSNP50K provide a promising breeding system for hybrid pepper. HORTICULTURE RESEARCH 2024; 11:uhae223. [PMID: 39415972 PMCID: PMC11480663 DOI: 10.1093/hr/uhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Cytoplasmic male sterility (CMS) is pivotal in plant breeding and widely employed in various crop hybrids, including pepper. However, the functional validation of the restorer of fertility (Rf) gene in pepper has been lacking until now. This study identifies and characterizes CaRf, a single dominant locus crucial for restoring CMS in the pepper strong recovery inbred line Zhangshugang. The CaRf gene encodes a mitochondria-targeted pentatricopeptide repeat protein, validated through the induction of male sterility upon its silencing in hybrid F1 plants. To enhance pepper breeding efficiency, 176 important pepper breeding parent materials were resequenced, and a PepperSNP50K liquid-phase breeding chip was developed, comprising 51 172 markers. Integration of CaRf functional characterization and PepperSNP50K facilitated the development of a high-quality red pepper hybrid. These findings provide significant insights and practical strategies for advancing molecular-designed breeding in peppers.
Collapse
Affiliation(s)
- Bingqian Tang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Huiping Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qinbiao Yin
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha 410125, China
| | - Yuting Lei
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Qingzhi Cui
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jiawen Cheng
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Xinhao Zhang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Chen
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Juan Du
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lingling Xie
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shunxue Tang
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Meiqi Wang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jiayue Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingyue Cao
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Li Chen
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Fangling Xie
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiumin Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Fan Zhu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhongyi Wang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Xiong
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feng Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Wang D, Du M, Lyu P, Li J, Meng H, Liu X, Shi M, Gong Y, Sha Q, Men Q, Li X, Sun Y, Guo S. Functional Characterization of the Soybean Glycine max Actin Depolymerization Factor GmADF13 for Plant Resistance to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1651. [PMID: 38931083 PMCID: PMC11207668 DOI: 10.3390/plants13121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Deying Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengxue Du
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Peng Lyu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Jingyu Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Huiran Meng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xinxin Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengmeng Shi
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qi Sha
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qingmei Men
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xiaofei Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Che L, Lu S, Liang G, Gou H, Li M, Chen B, Mao J. Identification and expression analysis of the grape pentatricopeptide repeat (PPR) gene family in abiotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1849-1874. [PMID: 36484031 PMCID: PMC9723081 DOI: 10.1007/s12298-022-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The pentatricopeptide repeat (PPR) is one of the largest gene family in plants, and play important role in regulating plant growth, development and abiotic stress response. However, PPR genes have been poorly studied in grapes. In this study, based on the grape genome database, bioinformatics methods and quantitative real-time PCR (qRT-PCR) were used to identify the VvPPR family and the response to abiotic stress. A total of 181 PPR genes were identified in grape and divided into two subfamilies. Subcellular localization predicted that this gene family mainly functions in chloroplasts, nucleus, and mitochondria. Protein-protein interaction prediction indicated that there may be interaction between VvPPR44,53 and VvPPR44. The promoter region of VvPPR gene family contained various cis-acting elements, which were related to light and hormone. Expression pattern analysis showed that the VvPPR gene family was highly expressed in grape leaves, buds and carpel tissues. qRT-PCR results showed that the expression of VvPPR genes in roots was higher than stems and leaves under NAA, SA, ABA, MeJA and GA3 treatments. VvPPR8 was significantly up-regulated after GA3 and MeJA treatment for 24 h, VvPPR53 was significantly up-regulated after SA, NAA, ABA and MeJA treatment. In addition, In grape leaves, VvPPR53 was up-regulated under PEG, Nacl and 4 ℃ treatments. These data indicate that VvPPR gene family members are responsive to hormones and abiotic stresses, and that there are some differences in the degree of response and expression in different grape tissues. This study provides a certain theoretical basis for grape resistance breeding.
Collapse
Affiliation(s)
- Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| |
Collapse
|
5
|
Optimized Method for the Identification of Candidate Genes and Molecular Maker Development Related to Drought Tolerance in Oil Palm (Elaeis guineensis Jacq.). PLANTS 2022; 11:plants11172317. [PMID: 36079700 PMCID: PMC9460821 DOI: 10.3390/plants11172317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Drought is a major constraint in oil palm (Elaeis guineensis Jacq.) production. As oil palm breeding takes a long time, molecular markers of genes related to drought tolerance characteristics were developed for effective selection. Two methods of gene identification associated with drought, differential display reverse transcription polymerase chain reaction (DDRT-PCR) and pyrosequencing platform, were conducted before developing the EST-SSR marker. By DDRT-PCR, fourteen out of twenty-four primer combinations yielded the polymorphism in leaf as 77.66% and root as 96.09%, respectively. BLASTN and BLASTX revealed nucleotides from 8 out of 236 different banding similarities to genes associated with drought stress. Five out of eight genes gave a similarity with our pyrosequencing sequencing database. Furthermore, pyrosequencing analysis of two oil palm libraries, drought-tolerant, and drought sensitive, found 117 proteins associated with drought tolerance. Thirteen out of sixty EST-SSR primers could be distinguished in 119 oil palm parents in our breeding program. All of our found genes revealed an ability to develop as a molecular marker for drought tolerance. However, the function of the validated genes on drought response in oil palm must be evaluated.
Collapse
|
6
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
7
|
Cho KH, Kim MY, Kwon H, Yang X, Lee SH. Novel QTL identification and candidate gene analysis for enhancing salt tolerance in soybean (Glycine max (L.) Merr.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111085. [PMID: 34763870 DOI: 10.1016/j.plantsci.2021.111085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Soybean, a glycophyte that is sensitive to salt stress, is greatly affected by salinity at all growth stages. A mapping population derived from a cross between a salt-sensitive Korean cultivar, Cheongja 3, and a salt-tolerant landrace, IT162669, was used to identify quantitative trait loci (QTLs) conferring salt tolerance in soybean. Following treatment with 120 mM NaCl for 2 weeks, phenotypic traits representing physiological damage, leaf Na+ content, and K+/Na+ ratio were characterized. Among the QTLs mapped on a high-density genetic map harboring 2,630 single nucleotide polymorphism markers, we found two novel major loci, qST6, on chromosome 6, and qST10, on chromosome 10, which controlled traits related to ion toxicity and physiology in response to salinity, respectively. These loci were distinct from the previously known salt tolerance allele on chromosome 3. Other QTLs associated with abiotic stress overlapped with the genomic regions of qST6 and qST10, or with their paralogous regions. Based on the functional annotation and parental expression differences, we identified eight putative candidate genes, two in qST6 and six in qST10, which included a phosphoenolpyruvate carboxylase and an ethylene response factor. This study provides additional genetic resources to breed soybean cultivars with enhanced salt tolerance.
Collapse
Affiliation(s)
- Kang-Heum Cho
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Xuefei Yang
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Feng X, Yang S, Zhang Y, Zhiyuan C, Tang K, Li G, Yu H, Leng J, Wang Q. GmPGL2, Encoding a Pentatricopeptide Repeat Protein, Is Essential for Chloroplast RNA Editing and Biogenesis in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:690973. [PMID: 34567023 PMCID: PMC8458969 DOI: 10.3389/fpls.2021.690973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis and development are highly complex processes requiring interactions between plastids and nuclear genomic products. Pentatricopeptide repeat (PPR) proteins play an essential role in the development of chloroplasts; however, it remains unclear how RNA editing factors influence soybean development. In this study, a Glycine max pale green leaf 2 mutant (Gmpgl2) was identified with decreased chlorophyll contents. Genetic mapping revealed that a single-nucleotide deletion at position 1949 bp in the Glyma.05g132700 gene in the Gmpgl2 mutant, resulting in a truncated GmPGL2 protein. The nuclear-encoded GmPGL2 is a PLS-type PPR protein that localizes to the chloroplasts. The C-to-U editing efficiencies of rps16, rps18, ndhB, ndhD, ndhE, and ndhF were reduced in the Gmpgl2 mutant. RNA electrophoresis mobility shift assay (REMSA) analysis further revealed that GmPGL2 binds to the immediate upstream sequences at RNA editing sites of rps16 and ndhB in vitro, respectively. In addition, GmPGL2 was found to interact with GmMORF8, GmMORF9, and GmORRM6. These results suggest that GmPGL2 participates in C-to-U RNA editing via the formation of a complex RNA editosome in soybean chloroplasts.
Collapse
Affiliation(s)
- Xingxing Feng
- College of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Cheng Zhiyuan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Blanco-Pastor JL, Liberal IM, Sakiroglu M, Wei Y, Brummer EC, Andrew RL, Pfeil BE. Annual and perennial Medicago show signatures of parallel adaptation to climate and soil in highly conserved genes. Mol Ecol 2021; 30:4448-4465. [PMID: 34217151 DOI: 10.1111/mec.16061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.
Collapse
Affiliation(s)
- José Luis Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | - Isabel M Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Yanling Wei
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - E Charles Brummer
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
10
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
11
|
Leng ZX, Liu Y, Chen ZY, Guo J, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Cui XY. Genome-Wide Analysis of the DUF4228 Family in Soybean and Functional Identification of GmDUF4228 -70 in Response to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:628299. [PMID: 34079564 PMCID: PMC8166234 DOI: 10.3389/fpls.2021.628299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Domain of unknown function 4228 (DUF4228) proteins are a class of proteins widely found in plants, playing an important role in response to abiotic stresses. However, studies on the DUF4228 family in soybean (Glycine max L.) are sparse. In this study, we identified a total of 81 DUF4228 genes in soybean genome, named systematically based on their chromosome distributions. Results showed that these genes were unevenly distributed on the 20 chromosomes of soybean. The predicted soybean DUF4228 proteins were identified in three groups (Groups I-III) based on a maximum likelihood phylogenetic tree. Genetic structure analysis showed that most of the GmDUF4228 genes contained no introns. Expression profiling showed that GmDUF4228 genes were widely expressed in different organs and tissues in soybean. RNA-seq data were used to characterize the expression profiles of GmDUF4228 genes under the treatments of drought and salt stresses, with nine genes showing significant up-regulation under both drought and salt stress further functionally verified by promoter (cis-acting elements) analysis and quantitative real-time PCR (qRT-PCR). Due to its upregulation under drought and salt stresses based on both RNA-seq and qRT-PCR analyses, GmDUF4228-70 was selected for further functional analysis in transgenic plants. Under drought stress, the degree of leaf curling and wilting of the GmDUF4228-70-overexpressing (GmDUF4228-70-OE) line was lower than that of the empty vector (EV) line. GmDUF4228-70-OE lines also showed increased proline content, relative water content (RWC), and chlorophyll content, and decreased contents of malondialdehyde (MDA), H2O2, and O2-. Under salt stress, the changes in phenotypic and physiological indicators of transgenic plants were the same as those under drought stress. In addition, overexpression of the GmDUF4228-70 gene promoted the expression of marker genes under both drought and salt stresses. Taken together, the results indicated that GmDUF4228 genes play important roles in response to abiotic stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Xin Leng
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ying Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhan-Yu Chen
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - You-Zhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhao-Shi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences/College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:ijms21093361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
13
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:E3361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
14
|
Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21051820. [PMID: 32155784 PMCID: PMC7084258 DOI: 10.3390/ijms21051820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
|
15
|
Su HG, Zhang XH, Wang TT, Wei WL, Wang YX, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:726. [PMID: 32670311 PMCID: PMC7332888 DOI: 10.3389/fpls.2020.00726] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 05/03/2023]
Abstract
GDSL-type esterase/lipase proteins (GELPs) belong to the SGNH hydrolase superfamily and contain a conserved GDSL motif at their N-terminus. GELPs are widely distributed in nature, from microbes to plants, and play crucial roles in growth and development, stress responses and pathogen defense. However, the identification and functional analysis of GELP genes are hardly explored in soybean. This study describes the identification of 194 GELP genes in the soybean genome and their phylogenetic classification into 11 subfamilies (A-K). GmGELP genes are disproportionally distributed on 20 soybean chromosomes. Large-scale WGD/segmental duplication events contribute greatly to the expansion of the soybean GDSL gene family. The Ka/Ks ratios of more than 70% of duplicated gene pairs ranged from 0.1-0.3, indicating that most GmGELP genes were under purifying selection pressure. Gene structure analysis indicate that more than 74% of GmGELP genes are interrupted by 4 introns and composed of 5 exons in their coding regions, and closer homologous genes in the phylogenetic tree often have similar exon-intron organization. Further statistics revealed that approximately 56% of subfamily K members contain more than 4 introns, and about 28% of subfamily I members consist of less than 4 introns. For this reason, the two subfamilies were used to simulate intron gain and loss events, respectively. Furthermore, a new model of intron position distribution was established in current study to explore whether the evolution of multi-gene families resulted from the diversity of gene structure. Finally, RNA-seq data were used to investigate the expression profiles of GmGELP gene under different tissues and multiple abiotic stress treatments. Subsequently, 7 stress-responsive GmGELP genes were selected to verify their expression levels by RT-qPCR, the results were consistent with RNA-seq data. Among 7 GmGELP genes, GmGELP28 was selected for further study owing to clear responses to drought, salt and ABA treatments. Transgenic Arabidopsis thaliana and soybean plants showed drought and salt tolerant phenotype. Overexpression of GmGELP28 resulted in the changes of several physiological indicators, which allowed plants to adapt adverse conditions. In all, GmGELP28 is a potential candidate gene for improving the salinity and drought tolerance of soybean.
Collapse
Affiliation(s)
- Hong-Gang Su
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ting-Ting Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Zhao-Shi Xu,
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Dong-Hong Min,
| |
Collapse
|