1
|
Ossendorff R, Kurth S, Wang S, Jaenisch M, Assaf E, Scheidt S, Welle K, Burger C, Wirtz DC, Strauss AC, Schildberg FA. Comparison of Concentration- and Homology-Dependent Effects of the Proinflammatory Cytokine Interleukin-1β (IL-1β) in a Bovine Chondrocyte Inflammation Model. Cells 2024; 14:30. [PMID: 39791731 PMCID: PMC11719847 DOI: 10.3390/cells14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture. Titration of IL-1β (100-0.1 ng/mL) was performed with both human and bovine recombinant protein in chondrocyte culture for 2 weeks. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP), proteoglycan-4 (PRG-4)), catabolic matrix metallo proteinases (MMP-3, MMP-13), dedifferentiation (collagen 1) markers and inflammatory cytokines IL-6 and IL-8 was determined. Analysis of the cell culture medium was performed for the inflammatory markers IL-6 and nitric oxide (NO). In general, the influence of IL-1β was shown by a decrease in the expression of anabolic markers (collagen 2, aggrecan, PRG-4), whereas the catabolic markers MMP-3 and MMP-13 as well as the inflammatory markers IL-6 and IL-8 were significantly increased. This was observed both at the early time point (day 4) and at the late time point (day 14). The described inflammatory effects were confirmed by increased concentration-dependent release of NO and IL-6. The threshold concentration for a detectable effect compared to control differed between groups, but was reached earlier by homologous application of IL-1β. This study provides a systematic evaluation of IL-1β-specific effects on chondrocytes in a 3D pellet culture model, which is highly relevant for comparisons of studies in OA-specific drug development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Huang H, Yang L, He H, Zhou B, Qin Z, Zheng L, Shen C. Construction of mitochondrial-targeting nano-prodrug for enhanced Rhein delivery and treatment for osteoarthritis in vitro. Int J Pharm 2024; 661:124397. [PMID: 38945463 DOI: 10.1016/j.ijpharm.2024.124397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Rhein, a natural anthraquinone compound derived from traditional Chinese medicine, exhibits potent anti-inflammatory properties via modulating the level of Reactive oxygen or nitrogen species (RONS). Nevertheless, its limited solubility in water, brief duration of plasma presence, as well as its significant systemic toxicity, pose obstacles to its in vivo usage, necessitating the creation of a reliable drug delivery platform to circumvent these difficulties. In this study, an esterase-responsive and mitochondria-targeted nano-prodrug was synthesized by conjugating Rhein with the polyethylene glycol (PEG)-modified triphenyl phosphonium (TPP) molecule, forming TPP-PEG-RH, which could spontaneously self-assemble into RPT NPs when dispersed in aqueous media. The TPP outer layer of these nanoparticles enhances their pharmacokinetic profile, facilitates efficient delivery to mitochondria, and promotes cellular uptake, thereby enabling enhanced accumulation in mitochondria and improved therapeutic effects in vitro. The decline in RONS was observed in IL-1β-stimulated chondrocyte after RPT NPs treating. RPT NPs also exert excellent anti-inflammatory (IL-1β, TNF-α, IL-6 and MMP-13) and antioxidative effects (Cat and Sod) via the Nrf2 signalling pathway, upregulation of cartilage related genes (Col2a1 and Acan). Moreover, RPT NPs shows protection of mitochondrial membrane potential and inhibition of chondrocyte apoptosis. Moreover, These findings suggest that the mitochondria-targeted polymer-Rhein conjugate may offer a therapeutic solution for patients suffering from chronic joint disorders, by attenuating the progression of osteoarthritis (OA).
Collapse
Affiliation(s)
- Hongjun Huang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, China
| | - Lerong Yang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Chong Shen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, China.
| |
Collapse
|
3
|
Tong X, Wang Y, Dong B, Li Y, Lang S, Ma J, Ma X. Effects of genus Epimedium in the treatment of osteoarthritis and relevant signaling pathways. Chin Med 2023; 18:92. [PMID: 37525296 PMCID: PMC10388486 DOI: 10.1186/s13020-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease in clinical practice with a high prevalence, especially in the elderly. Traditional Chinese Medicine (TCM) believes that OA belongs to the category of "Bi syndrome" and the "bone Bi syndrome". The etiology and pathogenesis lie in the deficiency of the liver and kidney, the deficiency of Qi and blood, and external exposure to wind, cold, and dampness. Epimedium is a yang-reinforcing herb in TCM, which can tonify the liver and kidney, strengthen muscles and bones, dispel wind, cold and dampness, and can treat both the symptoms and the root cause of "bone Bi syndrome". In addition, Epimedium contains a large number of ingredients. Through modern science and technology, more than 270 compounds have been found in Epimedium, among which flavonoids are the main active ingredients. Therefore, our study will review the effects and mechanisms of genus Epimedium in treating OA from two aspects: (1) Introduction of Epimedium and its main active ingredients; (2) Effects of Epimedium and its active ingredients in treating OA and relevant signaling pathways, in order to provide more ideas for OA treatment.
Collapse
Affiliation(s)
- Xue Tong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Wang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Benchao Dong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Li
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Shuang Lang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Xinlong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Wu E, Zhang J, Chen W, Wang Y, Yin H. Comparative pharmacokinetic study of nine bioactive components in osteoarthritis rat plasma using ultra-performance liquid chromatography-tandem mass spectrometry after single and combined oral administration of Epimedii Folium and Chuanxiong Rhizoma extracts. Biomed Chromatogr 2023; 37:e5518. [PMID: 36201235 DOI: 10.1002/bmc.5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
The herb pair Epimedii Folium-Chuanxiong Rhizoma (EF-CR), derived from the classical traditional Chinese medicine 'Xian Ling Pi San', has a distinctive compatibility therapeutic profile and is clinically safe and effective. This study aimed to investigate and compare the pharmacokinetic characteristics of nine analytes in osteoarthritis (OA) rat plasma after the oral administration of EF, CR or a combination of these two herbs. We developed an ultra-performance liquid chromatography method coupled with quadrupole linear ion-trap mass spectrometry to simultaneously quantify and assess the pharmacokinetics of icariin, epimedin A, epimedin B, epimedin C, icariside I, icariside II, ferulic acid, ligustilide and senkyunolide A of the EF-CR pair in the plasma of osteoarthritic rats. The pharmacokinetic parameters showed that the absorption of multiple components was significantly enhanced and residence time was prolonged in the EF-CR group (P < 0.05) compared to the single-herb group. These parameters revealed that the combination of EF and CR exhibited synergistic effects of the nine bioactive components, suggesting the potential application of the EF-CR combination for the treatment of OA.
Collapse
Affiliation(s)
- Enhui Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Standardization of Chinese Medicine Research Laboratory, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianhua Zhang
- Department of Osteopathy and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Standardization of Chinese Medicine Research Laboratory, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yahong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Standardization of Chinese Medicine Research Laboratory, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Yin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Standardization of Chinese Medicine Research Laboratory, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Li K, Zhu Y, Zhang P, Alini M, Grad S, Li Z. Anti-inflammatory and pro-anabolic effects of 5-aminosalicylic acid on human inflammatory osteoarthritis models. J Orthop Translat 2023; 38:106-116. [PMID: 36381242 PMCID: PMC9633873 DOI: 10.1016/j.jot.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, mainly affecting the elderly worldwide, for which the drug treatment remains a major challenge. Low-grade inflammation plays a pivotal role in OA onset and progression. Exploration of notable anti-inflammatory and disease-modifying drugs on human samples could facilitate the evaluation of therapeutic strategies for OA. Methods The anti-inflammatory drug 5-aminosalicylic acid (5-ASA) is a first-line drug for ulcerative colitis (UC), however no study has explored the effects of 5-ASA on articular chondrocytes. In this work, both in vitro (chondrocyte pellets) and ex vivo (osteochondral explants) human inflammatory OA models were applied to evaluate the effects of 5-ASA. Results In the inflammatory pellet model, 5-ASA remarkably downregulated the gene expression of interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) while upregulating proteoglycan 4 (PRG4) and cartilage oligomeric matrix protein (COMP) gene expression. Total glycosaminoglycan (GAG) synthesis by pellets was markedly increased in 5-ASA-treated groups compared with the inflammatory group. In conditioned medium, inflammatory mediators (IL-8, nitric oxide) were markedly inhibited upon 5-ASA treatment. Moreover, histological staining showed 5-ASA retained proteoglycan content and inhibited degradation of extracellular matrix (ECM) core components, aggrecan (ACAN) and collagen type II (COL2). In the inflammatory explant model, 5-ASA mitigated signs of OA development by reducing inflammatory mediators and GAG loss. Conclusions These findings suggest that 5-ASA has anti-inflammatory and pro-anabolic effects on human chondrocyte pellet and osteochondral explant inflammatory OA models. The translational potential of this article Disease-modifying OA drugs are an unmet clinical need for the treatment of OA. Our study explored and demonstrated the anti-inflammatory and protective effects of 5-ASA on in vitro and ex vivo human inflammatory OA models, showing its translational potential for OA treatment.
Collapse
Affiliation(s)
- Kaihu Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- AO Research Institute Davos, Davos, Switzerland
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Penghui Zhang
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
- Corresponding author.
| |
Collapse
|
6
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
7
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
8
|
Xu X, Li N, Wu Y, Yan K, Mi Y, Yi N, Tan X, Kuang G, Lu M. Zhuifeng tougu capsules inhibit the TLR4/MyD88/NF-κB signaling pathway and alleviate knee osteoarthritis: In vitro and in vivo experiments. Front Pharmacol 2022; 13:951860. [PMID: 36188596 PMCID: PMC9521277 DOI: 10.3389/fphar.2022.951860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Knee osteoarthritis (KOA), a chronic degenerative disease, is mainly characterized by destruction of articular cartilage and inflammatory reactions. At present, there is a lack of economical and effective clinical treatment. Zhuifeng Tougu (ZFTG) capsules have been clinically approved for treatment of OA as they relieve joint pain and inflammatory manifestations. However, the mechanism of ZFTG in KOA remains unknown.Purpose: This study aimed to investigate the effect of ZFTG on the TLR4/MyD88/NF-κB signaling pathway and its therapeutic effect on rabbits with KOA.Study design:In vivo, we established a rabbit KOA model using the modified Videman method. In vitro, we treated chondrocytes with IL-1β to induce a pro-inflammatory phenotype and then intervened with different concentrations of ZFTG. Levels of IL-1β, IL-6, TNF-α, and IFN-γ were assessed with histological observations and ELISA data. The effect of ZFTG on the viability of chondrocytes was detected using a Cell Counting Kit-8 and flow cytometry. The protein and mRNA expressions of TLR2, TLR4, MyD88, and NF-κB were detected using Western blot and RT-qPCR and immunofluorescence observation of NF-κB p65 protein expression, respectively, to investigate the mechanism of ZFTG in inhibiting inflammatory injury of rabbit articular chondrocytes and alleviating cartilage degeneration.Results: The TLR4/MyD88/NF-κB signaling pathway in rabbits with KOA was inhibited, and the levels of IL-1β, IL-6, TNF-α, and IFN-γ in blood and cell were significantly downregulated, consistent with histological results. Both the protein and mRNA expressions of TLR2, TLR4, MyD88, NF-κB, and NF-κB p65 proteins in that nucleus decreased in the ZFTG groups. Moreover, ZFTG promotes the survival of chondrocytes and inhibits the apoptosis of inflammatory chondrocytes.Conclusion: ZFTG alleviates the degeneration of rabbit knee joint cartilage, inhibits the apoptosis of inflammatory chondrocytes, and promotes the survival of chondrocytes. The underlying mechanism may be inhibition of the TLR4/MyD88/NF-kB signaling pathway and secretion of inflammatory factors.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Naping Li
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongrong Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Yan
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yilin Mi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nanxing Yi
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuyi Tan
- Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, China
| | - Gaoyan Kuang
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Postdoctoral Research Workstation, Hinye Pharmaceutical Co., Ltd., Changsha, Hunan, China
- *Correspondence: Gaoyan Kuang, ; Min Lu,
| | - Min Lu
- Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Gaoyan Kuang, ; Min Lu,
| |
Collapse
|
9
|
Zhang P, Li K, Kamali A, Ziadlou R, Ahmad P, Wang X, Richards RG, Alini M, Basoli V, Li Z, Grad S. Small molecules of herbal origin for osteoarthritis treatment: in vitro and in vivo evidence. Arthritis Res Ther 2022; 24:105. [PMID: 35545776 PMCID: PMC9092710 DOI: 10.1186/s13075-022-02785-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/19/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.
Collapse
Affiliation(s)
- Penghui Zhang
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaihu Li
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | | | - Paras Ahmad
- AO Research Institute Davos, Davos, Switzerland
| | - Xinluan Wang
- Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland.
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland. .,Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
10
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Network Pharmacology-Based Analysis on the Curative Effect of Kunxian Capsules against Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6812374. [PMID: 34630616 PMCID: PMC8497097 DOI: 10.1155/2021/6812374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Kunxian capsules (KCs), a Chinese patent medicine, have been clinically proven to be effective in the treatment of rheumatoid arthritis (RA). However, the chemical profile of KC remains to be characterized, and the mechanism underlying the protective effect against RA is yet to be elucidated. Here, a network pharmacology-based approach was adopted, integrated with the chemical profiling of KC by UHPLC-Q-TOF/MS. As a result, a total of 67 compounds have been identified from KC extract, among which 43 were authenticated by comparison to the mass spectrum of standard chemicals. ADME behaviors of the chemical constituents of KC were predicted, resulting in 35 putative active ingredients. Through target prediction of both active ingredients of KC and RA and PPI analysis, core targets were screened out, followed by biological process and related pathway enrichment. Then, a TCM-herb-ingredient-target-pathway network was constructed and a multicomponent, multitarget, and multipathway synergistic mechanism was proposed, providing an information basis for further investigation. The active pharmaceutical ingredients included mainly terpenoids (such as triptolide and celastrol), sesquiterpene pyridines (such as wilforgine and wilforine), and flavonoids (such as icariin, epimedin A, B, and C, and 2″-O-rhamnosylicariside II).
Collapse
|
12
|
Li J, Chen W, Wang Y, Yin H. An LC-MS/MS method for simultaneous quantification of 11 components of Xian-Xiong-Gu-Kang in the plasma of osteoarthritic rats and pharmacokinetic analysis. J Sep Sci 2021; 44:3386-3397. [PMID: 34185967 DOI: 10.1002/jssc.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Xian-Xiong-Gu-Kang is composed of Epimedium brevicornu, Ligusticum chuanxiong, Radix clematidis, Cinnamomum cassia, and Fructus xanthii. It is used to treat numbness and pain of limbs. In this study, we developed a method to simultaneously quantify 11 components of Xian-Xiong-Gu-Kang (icarrin, epimedin A, epimedin B, epimedin C, icariside II, chlorogenic acid, ligustilide, senkyunolide A, senkyunolide I, ferulic acid, and cinnamic acid) in rat plasma using ultra-performance liquid chromatography coupled with quadrupole linear ion trap mass spectrometry. Chromatographic separation was performed on an ACQUITY UPLC BEH C18 column using gradient elution with a mobile phase comprising acetonitrile and 0.05% (v/v) formic acid aqueous solution. Mass spectrometry detection was performed using positive and negative electrospray ionization in the multiple reaction monitoring mode. The calibration curves of the 11 constituents were linear, with correlation coefficients > 0.99. The intra- and interday accuracy and precision values were within ±15.0%. The extraction recoveries of the 11 constituents and two internal standards were between 66.05 and 105.40%, and the matrix effects were between 86.74 and 112.86%. Using this method, the pharmacokinetic features of the 11 constituents were elucidated in the plasma of osteoarthritic rats after oral administration of the Xian-Xiong-Gu-Kang extract.
Collapse
Affiliation(s)
- Junfeng Li
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Wenjun Chen
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yahong Wang
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Hua Yin
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| |
Collapse
|
13
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
14
|
Zhang Y, Sun L, Liu X, Zhu D, Dang J, Xue Y, Fan H. Investigating the protective effect of tanshinone IIA against chondrocyte dedifferentiation: a combined molecular biology and network pharmacology approach. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:249. [PMID: 33708876 PMCID: PMC7940936 DOI: 10.21037/atm-20-4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Osteoarthritis (OA) is a common degenerative disease with multifactorial etiology. The dedifferentiation of chondrocytes can accelerate the progress of OA. Tanshinone IIA (TIIA) has been widely used to treat OA for many years and has proved to be effective in inhibiting chondrocyte dedifferentiation. Until now, the precise mechanism of TIIA’s effect against dedifferentiation has not been well understood. Methods The targets of TIIA were explored from public databases using various methods. The related targets of OA were obtained from the GeneCards database and the Online Mendelian Inheritance in Man (OMIM) database. The potential targets and signaling pathways were determined using protein-protein interaction (PPI), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Cell viability, proliferation, and metabolic activity were analyzed in vitro. The effects of TIIA on chondrocyte dedifferentiation were evaluated by assessing morphological changes, glycosaminoglycan (GAG) production, and messenger RNA (mRNA) levels of cartilage-related genes. After 48 hours of culture in medium with 100 μg/mL TIIA, chondrocytes/hydrogel spheres were implanted to repair cartilage defects in a rat model. The harvested specimens were examined with hematoxylin and eosin (H&E) staining and immunohistochemistry to evaluate cartilage regeneration. Results The results showed that there were 28 genes potentially interacting in the TIIA-chondrocyte dedifferentiation network, and nine hub genes were identified. In vitro experiments showed an inhibitory effect of TIIA on chondrocyte dedifferentiation. The proliferation and viability of chondrocytes were promoted by TIIA at a concentration of 100–200 μg/mL, but inhibited by TIIA at 400 μg/mL. Furthermore, the histology results showed that chondrocyte/hydrogel spheres pre-treated with TIIA had better cartilage repair. Conclusions This study revealed a systematic network pharmacology approach and provided a basis for the future study of TIIA as an effective treatment for cartilage regeneration. Moreover, in vitro and in vivo results confirmed the protective effects of TIIA against chondrocyte dedifferentiation.
Collapse
Affiliation(s)
- Yushen Zhang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liguo Sun
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xincheng Liu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongze Zhu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingsen Xue
- Department of Orthopedic Surgery, Northwest Women and Children's Hospital, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Yu F, Zhu J, Lei M, Wang C, Xie K, Xu F, Lin S. Exploring the metabolic phenotypes associated with different host inflammation of acute respiratory distress syndrome (ARDS) from lung metabolomics in mice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8971. [PMID: 33049802 PMCID: PMC7646044 DOI: 10.1002/rcm.8971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The aim of this study was to analyze the metabolomics of lung with different host inflammation of acute respiratory distress syndrome (ARDS) for the identification of biomarkers for predicting severity under different inflammatory conditions. METHODS Cecal ligation and puncture (CLP) and lipopolysaccharide (LPS)-intratracheal injection induced acute lung injury (ALI) were used. A mouse model was used to explore lung metabolomic biomarkers in ALI/ARDS. The splenectomy model was used as an auxiliary method to distinguish between hyper- and hypo-inflammatory subtypes. Plasma, lung tissue and bronchoalveolar lavage fluid (BALF) samples were collected from mice after CLP/LPS. The severity of lung injury was evaluated. Expression of tumor necrosis factor-α (TNF-α) in mice serum and lung was tested by enzyme-linked immunosorbent assay (ELISA) and polymer chain reaction (PCR). Polymorphonuclear cells in BALF were counted. The lung metabolites were detected by gas chromatography/mass spectrometry (GC/MS), and the metabolic pathways predicted using the KEGG database. RESULTS The LPS/CLP-Splen group had more severe lung injury than the corresponding ALI group; that in the CLP-Splen group was more serious than in the LPS-Splen group. TNF-α expression was significantly elevated in the serum and lung tissue after LPS or CLP, and higher in the LPS/CLP-Splen group than in the corresponding ALI group. The level of TNF-α in the CLP-Splen group was elevated significantly over that in the LPS-Splen group. Both these groups also showed significant neutrophil exudation within the lungs. During differential inflammation, more differential metabolites were detected in the lungs of the CLP group ALI mice than in the LPS group. A total of 41 compounds were detected in the lungs of the CLP and CLP-Splen groups. Contrastingly, eight compounds were detected in the lungs of the LPS and LPS-Splen groups. The LPS-Splen and CLP-Splen groups had significant neutrophil exudation in the lung. Random forest analysis of lung-targeted metabolomics data indicated 4-hydroxyphenylacetic acid, 1-aminocyclopentanecarboxylic acid (ACPC), cis-aconitic acid, and hydroxybenzoic acid as strong predictors of the hyper-inflammatory subgroup in the CLP group. Furthermore, with splenectomy, 13 differential metabolic pathways between the CLP and LPS groups were revealed. CONCLUSIONS Hyper-inflammatory subgroups of ARDS have a greater inflammatory response and a more active lung metabolism. Combined with the host inflammation background, biomarkers from metabolomics could help evaluate the response severity of ARDS.
Collapse
Affiliation(s)
- Feng Yu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineChangshou People's HospitalChongqing401220China
| | - Jing Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ming Lei
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Critical Care MedicineThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen518000China
| | - Chuan‐jiang Wang
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ke Xie
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Fang Xu
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shi‐hui Lin
- Department of Critical Care MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
17
|
Salgado C, Jordan O, Allémann E. Osteoarthritis In Vitro Models: Applications and Implications in Development of Intra-Articular Drug Delivery Systems. Pharmaceutics 2021; 13:60. [PMID: 33466397 PMCID: PMC7824837 DOI: 10.3390/pharmaceutics13010060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a complex multi-target disease with an unmet medical need for the development of therapies that slow and potentially revert disease progression. Intra-articular (IA) delivery has seen a surge in osteoarthritis research in recent years. As local administration of molecules, this represents a way to circumvent systemic drug delivery struggles. When developing intra-articular formulations, the main goals are a sustained and controlled release of therapeutic drug doses, taking into account carrier choice, drug molecule, and articular joint tissue target. Therefore, the selection of models is critical when developing local administration formulation in terms of accurate outcome assessment, target and off-target effects and relevant translation to in vivo. The current review highlights the applications of OA in vitro models in the development of IA formulation by means of exploring their advantages and disadvantages. In vitro models are essential in studies of OA molecular pathways, understanding drug and target interactions, assessing cytotoxicity of carriers and drug molecules, and predicting in vivo behaviors. However, further understanding of molecular and tissue-specific intricacies of cellular models for 2D and 3D needs improvement to accurately portray in vivo conditions.
Collapse
Affiliation(s)
- Carlota Salgado
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (C.S.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (C.S.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (C.S.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Ziadlou R, Rotman S, Teuschl A, Salzer E, Barbero A, Martin I, Alini M, Eglin D, Grad S. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111701. [PMID: 33545860 DOI: 10.1016/j.msec.2020.111701] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022]
Abstract
Injury of articular cartilage leads to an imbalance in tissue homeostasis, and due to the poor self-healing capacity of cartilage the affected tissue often exhibits osteoarthritic changes. In recent years, injectable and highly tunable composite hydrogels for cartilage tissue engineering and drug delivery have been introduced as a desirable alternative to invasive treatments. In this study, we aimed to formulate injectable hydrogels for drug delivery and cartilage tissue engineering by combining different concentrations of hyaluronic acid-tyramine (HA-Tyr) with regenerated silk-fibroin (SF) solutions. Upon enzymatic crosslinking, the gelation and mechanical properties were characterized over time. To evaluate the effect of the hydrogel compositions and properties on extracellular matrix (ECM) deposition, bovine chondrocytes were embedded in enzymatically crosslinked HA-Tyr/SF composites (in further work abbreviated as HA/SF) or HA-Tyr hydrogels. We demonstrated that all hydrogel formulations were cytocompatible and could promote the expression of cartilage matrix proteins allowing chondrocytes to produce ECM, while the most prominent chondrogenic effects were observed in hydrogels with HA20/SF80 polymeric ratios. Unconfined mechanical testing showed that the compressive modulus for HA20/SF80 chondrocyte-laden constructs was increased almost 10-fold over 28 days of culture in chondrogenic medium which confirmed the superior production of ECM in this hydrogel compared to other hydrogels in this study. Furthermore, in hydrogels loaded with anabolic and anti-inflammatory drugs, HA20/SF80 hydrogel showed the longest and the most sustained release profile over time which is desirable for the long treatment duration typically necessary for osteoarthritic joints. In conclusion, HA20/SF80 hydrogel was successfully established as a suitable injectable biomaterial for cartilage tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Reihane Ziadlou
- AO Research Institute Davos, Davos Platz 7270, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Stijn Rotman
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - Andreas Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Elias Salzer
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrea Barbero
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| | - Ivan Martin
- Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland; Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4001, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - David Eglin
- AO Research Institute Davos, Davos Platz 7270, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos Platz 7270, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
19
|
Biological strategies for osteoarthritis: from early diagnosis to treatment. INTERNATIONAL ORTHOPAEDICS 2020; 45:335-344. [PMID: 33078204 DOI: 10.1007/s00264-020-04838-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To provide an updated review of the literature on the use of orthobiologics as a potential treatment option to alleviate symptoms associated with osteoarthritis (OA), slow the progression of the disease, and aid in cartilage regeneration. METHODS A comprehensive review of the literature was performed to identify basic science and clinical studies examining the role of orthobiologics in the diagnosis and management of osteoarthritis. RESULTS Certain molecules (such as interleukin-6 (IL-6), interleukin-8 (IL-8), matrix metalloproteinase (MMPs), cartilage oligomeric matrix protein (COMP), and tumor necrosis factor (TNF), microRNAs, growth differentiation factor 11 (GDF-11)) have been recognized as biomarkers that are implicated in the pathogenesis and progression of degenerative joint disease (DJD). These biomarkers have been used to develop newer diagnostic applications and targeted biologic therapies for DJD. Local injection therapy with biologic agents such as platelet-rich plasma or stem cell-based preparations has been associated with significant improvement in joint pain and function in patients with OA and has increased in popularity during the last decade. The combination of PRP with kartogenin or TGF-b3 may also enhance its biologic effect. The mesenchymal stem cell secretome has been recognized as a potential target for the development of OA therapies due to its role in mediating the chondroprotective effects of these cells. Recent experiments have also suggested the modification of gut microbiome as a newer method to prevent OA or alter the progression of the disease. CONCLUSIONS The application of orthobiologics for the diagnosis and treatment of DJD is a rapidly evolving field that will continue to expand. The identification of OA-specific and joint-specific biomarker molecules for early diagnosis of OA would be extremely useful for the development of preventive and therapeutic protocols. Local injection therapies with HA, PRP, BMAC, and other stem cell-based preparations are currently being used to improve pain and function in patients with early OA or those with progressed disease who are not surgical candidates. Although the clinical outcomes of these therapies seem to be promising in clinical studies, future research will determine the true role of orthobiologic applications in the field of DJS.
Collapse
|
20
|
Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules 2020; 10:biom10060932. [PMID: 32575510 PMCID: PMC7356262 DOI: 10.3390/biom10060932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), inhibition of excessively expressed pro-inflammatory cytokines in the OA joint and increasing the anabolism for cartilage regeneration are necessary. In this ex-vivo study, we used an inflammatory model of human OA chondrocytes microtissues, consisting of treatment with cytokines (interleukin 1β (IL-1β)/tumor necrosis factor α (TNF-α)) with or without supplementation of six herbal compounds with previously identified chondroprotective effect. The compounds were assessed for their capacity to modulate the key catabolic and anabolic factors using several molecular analyses. We selectively investigated the mechanism of action of the two most potent compounds Vanillic acid (VA) and Epimedin C (Epi C). After identification of the anti-inflammatory and anabolic properties of VA and Epi C, the Ingenuity Pathway Analysis showed that in both treatment groups, osteoarthritic signaling pathways were inhibited. In the treatment group with VA, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was inhibited by attenuation of the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα) phosphorylation. Epi C showed a significant anabolic effect by increasing the expression of collagenous and non-collagenous matrix proteins. In conclusion, VA, through inhibition of phosphorylation in NF-κB signaling pathway and Epi C, by increasing the expression of extracellular matrix components, showed significant anti-inflammatory and anabolic properties and might be potentially used in combination to treat or prevent joint OA.
Collapse
|
21
|
Identification of 5-Hydroxymethylfurfural (5-HMF) as an Active Component Citrus Jabara That Suppresses FcεRI-Mediated Mast Cell Activation. Int J Mol Sci 2020; 21:ijms21072472. [PMID: 32252468 PMCID: PMC7177689 DOI: 10.3390/ijms21072472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Jabara (Citrus jabara Hort. ex Y. Tanaka) is a type of citrus fruit known for its beneficial effect against seasonal allergies. Jabara is rich in the antioxidant narirutin whose anti-allergy effect has been demonstrated. One of the disadvantages in consuming Jabara is its bitter flavor. Therefore, we fermented the fruit to reduce the bitterness and make Jabara easy to consume. Here, we examined whether fermentation alters the anti-allergic property of Jabara. Suppression of degranulation and cytokine production was observed in mast cells treated with fermented Jabara and the effect was dependent on the length of fermentation. We also showed that 5-hydroxymethylfurfural (5-HMF) increases as fermentation progresses and was identified as an active component of fermented Jabara, which inhibited mast cell degranulation. Mast cells treated with 5-HMF also exhibited reduced degranulation and cytokine production. In addition, we showed that the expression levels of phospho-PLCγ1 and phospho-ERK1/2 were markedly reduced upon FcεRI stimulation. These results indicate that 5-HMF is one of the active components of fermented Jabara that is involved in the inhibition of mast cell activation.
Collapse
|