1
|
Tan L, Yang Y, Shang W, Hu Z, Peng H, Li S, Hu X, Rao X. Identification of Lysine Succinylome and Acetylome in the Vancomycin-Intermediate Staphylococcus aureus XN108. Microbiol Spectr 2022; 10:e0348122. [PMID: 36374118 PMCID: PMC9769639 DOI: 10.1128/spectrum.03481-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein posttranslational modifications (PTMs) play important roles in regulating numerous biological functions of prokaryotic and eukaryotic organisms. Lysine succinylation (Ksucc) and acetylation (Kac) are two important PTMs that have been identified in various bacterial species. However, the biological functions of Ksucc and Kac in vancomycin-intermediate S. aureus (VISA) remain unclear. In this study, we systematically identified 3,260 Ksucc sites in 799 proteins and 7,935 Kac sites across 1,710 proteins in the VISA strain XN108. Functional analyses revealed that both Ksucc and Kac sites were highly enriched in several critical metabolic pathways, including ribosomal metabolism, tricarboxylic acid cycle, and glycolysis. Furthermore, a remarkable cross talk between Ksucc and Kac modifications was observed that almost 75% of the succinylated sites were also frequently acetylated. In addition, we identified SaCobB, a Sirtuin 2-like lysine deacetylase, as a bifunctional enzyme with both deacetylation and desuccinylation activities in S. aureus. We demonstrated the first lysine succinylome and acetylome in a VISA and identified SaCobB, a functional enzyme taking part in the regulation of Ksucc and Kac in S. aureus. Our findings provide valuable information for further study on the regulatory mechanisms of PTMs in S. aureus. IMPORTANCE Lysine succinylation (Ksucc) and acetylation (Kac) are two important protein posttranslational modifications (PTMs) that regulate numerous biological functions in prokaryotes and eukaryotes. However, the functions of Ksucc and Kac in Staphylococcus aureus are seldom described. Understanding of Ksucc and Kac modifications in S. aureus will facilitate the development of new strategies to control infections. Herein, we quantified both Ksucc and Kac in a vancomycin-intermediate S. aureus (VISA) strain XN108, analyzed the interaction between these two PTMs, and identified SaCobB as a bifunctional enzyme with both deacetylation and desuccinylation activities. This study is the first description of dual PTMs, Ksucc and Kac profiles, in the VISA. The findings could provide valuable information for the following researches on the regulatory roles of PTMs in S. aureus.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Bai W, Cheng L, Xiong L, Wang M, Liu H, Yu K, Wang W. Protein succinylation associated with the progress of hepatocellular carcinoma. J Cell Mol Med 2022; 26:5702-5712. [PMID: 36308411 PMCID: PMC9667522 DOI: 10.1111/jcmm.17507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Although post‐translational modification is critical to tumorigenesis, how succinylation modification of lysine sites influences hepatocellular carcinoma (HCC) remains obscure. 90 tumours and paired adjacent normal tissue of liver cancer were enrolled for succinylation staining. 423 HCC samples with 20 genes related to succinylation modification from TCGA were downloaded for model construction. Statistical methods were employed to analyse the data, including the Non‐Negative Matrix Factorization (NMF) algorithm, t‐Distributed Stochastic Neighbour Embedding (t‐SNE) algorithm, and Cox regression analysis. The staining pan‐succinyllysine antibody staining indicated that tumour tissues had a higher succinyllysine level than adjacent tissues (p < 0.001), which could be associated with a worse prognosis (p = 0.02). The survival was associated with pathological stage, tumour recurrence status and succinyllysine intensity in the univariate or multivariable cox survival analysis model. The risk model from 20 succinyllysine‐related genes had the best prognosis prediction. The high expression of succinylation modification in HCC contributed to the worse patient survival prognosis. Model construction of 20 genes related to succinylation modification (MEAF6, OXCT1, SIRT2, CREBBP, KAT5, SIRT4, SIRT6, SIRT7, CPT1A, GLYATL1, SDHA, SDHB, SDHC, SDHD, SIRT1, SIRT3, SIRT5, SUCLA2, SUCLG1 and SUCLG2) could be reliable in predicting prognosis in HCC.
Collapse
Affiliation(s)
- Wenhui Bai
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Li Cheng
- Department of Intensive Care Unit, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Liangkun Xiong
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Maoming Wang
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Hao Liu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Eastern Campus Renmin Hospital of Wuhan University Wuhan China
| | - Weixing Wang
- Department of Hepatobiliary Surgery Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
3
|
Li X, Yang D, Yang Y, Jin G, Yin X, Zheng Y, Xu J, Yang Y. Quantitative Succinyl-Proteome Profiling of Turnip ( Brassica rapa var. rapa) in Response to Cadmium Stress. Cells 2022; 11:cells11121947. [PMID: 35741076 PMCID: PMC9221971 DOI: 10.3390/cells11121947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Protein post-translational modification (PTM) is an efficient biological mechanism to regulate protein structure and function, but its role in plant responses to heavy metal stress is poorly understood. The present study performed quantitative succinyl-proteome profiling using liquid chromatography−mass spectrometry analysis to explore the potential roles of lysine succinylation modification in turnip seedlings in response to cadmium (Cd) stress (20 μM) under hydroponic conditions over a short time period (0−8 h). A total of 547 succinylated sites on 256 proteins were identified in the shoots of turnip seedlings. These succinylated proteins participated in various biological processes (e.g., photosynthesis, tricarboxylic acid cycle, amino acid metabolism, and response to stimulation) that occurred in diverse cellular compartments according to the functional classification, subcellular localization, and protein interaction network analysis. Quantitative analysis showed that the intensities of nine succinylation sites on eight proteins were significantly altered (p < 0.05) in turnip shoots after 8 h of Cd stress. These differentially succinylated sites were highly conserved in Brassicaceae species and mostly located in the conserved domains of the proteins. Among them, a downregulated succinylation site (K150) in the glycolate oxidase protein (Gene0282600.1), an upregulated succinylation site (K396) in the catalase 3 protein (Gene0163880.1), and a downregulated succinylation site (K197) in the glutathione S-transferase protein (Gene0315380.1) may have contributed to the altered activity of the corresponding enzymes, which suggests that lysine succinylation affects the Cd detoxification process in turnip by regulating the H2O2 accumulation and glutathione metabolism. These results provide novel insights into understanding Cd response mechanisms in plants and important protein modification information for the molecular-assisted breeding of Brassica varieties with distinct Cd tolerance and accumulation capacities.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Danni Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Yunqiang Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Xin Yin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Yan Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: (J.X.); (Y.Y.)
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.L.); (D.Y.); (Y.Y.); (G.J.); (X.Y.); (Y.Z.)
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
- Correspondence: (J.X.); (Y.Y.)
| |
Collapse
|
4
|
Lv H, Zhang Y, Wang JS, Yuan SS, Sun ZJ, Dao FY, Guan ZX, Lin H, Deng KJ. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Brief Bioinform 2021; 23:6447435. [PMID: 34864888 DOI: 10.1093/bib/bbab486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification (PTM) refers to the covalent and enzymatic modification of proteins after protein biosynthesis, which orchestrates a variety of biological processes. Detecting PTM sites in proteome scale is one of the key steps to in-depth understanding their regulation mechanisms. In this study, we presented an integrated method based on eXtreme Gradient Boosting (XGBoost), called iRice-MS, to identify 2-hydroxyisobutyrylation, crotonylation, malonylation, ubiquitination, succinylation and acetylation in rice. For each PTM-specific model, we adopted eight feature encoding schemes, including sequence-based features, physicochemical property-based features and spatial mapping information-based features. The optimal feature set was identified from each encoding, and their respective models were established. Extensive experimental results show that iRice-MS always display excellent performance on 5-fold cross-validation and independent dataset test. In addition, our novel approach provides the superiority to other existing tools in terms of AUC value. Based on the proposed model, a web server named iRice-MS was established and is freely accessible at http://lin-group.cn/server/iRice-MS.
Collapse
Affiliation(s)
- Hao Lv
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, China
| | - Jia-Shu Wang
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Shi-Shi Yuan
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Zi-Jie Sun
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Fu-Ying Dao
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Zheng-Xing Guan
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Hao Lin
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Ke-Jun Deng
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| |
Collapse
|
5
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Pezzotti G, Zhu W, Chikaguchi H, Marin E, Boschetto F, Masumura T, Sato YI, Nakazaki T. Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode. Front Nutr 2021; 8:663569. [PMID: 34249986 PMCID: PMC8260989 DOI: 10.3389/fnut.2021.663569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Haruna Chikaguchi
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Kyoto Prefectural University, Kyoto, Japan
| | - Yo-Ichiro Sato
- Research Center for Japanese Food Culture, Kyoto Prefectural University, Kyoto, Japan
| | - Tetsuya Nakazaki
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| |
Collapse
|
7
|
Structure, Biosynthesis, and Biological Activity of Succinylated Forms of Bacteriocin BacSp222. Int J Mol Sci 2021; 22:ijms22126256. [PMID: 34200765 PMCID: PMC8230399 DOI: 10.3390/ijms22126256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory and cytotoxic activities toward eukaryotic cells. In the present study, we demonstrate that BacSp222 is produced in several post-translationally modified forms, succinylated at the ε-amino group of lysine residues. Such modifications have not been previously described for any bacteriocins. NMR and circular dichroism spectroscopy studies have shown that the modifications do not alter the spatial structure of the peptide. At the same time, succinylation significantly diminishes its bactericidal and cytotoxic potential. We demonstrate that the modification of the bacteriocin is an effect of non-enzymatic reaction with a highly reactive intracellular metabolite, i.e., succinyl-coenzyme A. The production of succinylated forms of the bacteriocin depends on environmental factors and on the access of bacteria to nutrients. Our study indicates that the production of succinylated forms of bacteriocin occurs in response to the changing environment, protects producer cells against the autotoxicity of the excreted peptide, and limits the pathogenicity of the strain.
Collapse
|
8
|
Dong Y, Li P, Li P, Chen C. First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera). BMC Genomics 2021; 22:255. [PMID: 33838656 PMCID: PMC8035759 DOI: 10.1186/s12864-021-07567-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however, limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects of lysine succinylation on the growth, development, and physiology of paper mulberry. RESULTS A total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle (TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation. The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety of biological processes, such as photosynthesis and the Calvin-Benson cycle. CONCLUSION Lysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the downstream effects of succinylation on the physiology and biochemistry of paper mulberry.
Collapse
Affiliation(s)
- Yibo Dong
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ping Li
- Institute of Grassland Research, Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Ping Li
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Li X, Wang L, Wang M, Zhang Z, Ma C, Ma X, Na X, Liang W. Global analysis of protein succinylation modification of Nostoc flagelliforme in response to dehydration. J Proteomics 2021; 237:104149. [PMID: 33588108 DOI: 10.1016/j.jprot.2021.104149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
Nostoc flagelliforme is a type of terrestrial cyanobacteria that is distributed in arid or semi-arid steppes in China. To research the molecular mechanisms underlying the adaptation of N. flagelliforme to drought stress, the succinylated expression profile and changes in N. flagelliforme that resulted as a response to dehydration were analyzed by label-free proteomics. A total of 1149 succinylated sites, 1128 succinylated peptides, and 396 succinylated proteins were identified. Succinylated proteins were differentially involved in photosynthesis and energy metabolism, as well as in reactive oxygen species (ROS) scavenging. Motif-X analysis of succinylated sites determined a succinylation motif [KxxG]. N. flagelliforme adapts to dehydration by increasing glucose metabolism and pentose phosphate pathway flux, and decreasing photosynthetic rate, which some of the key proteins were succinylated. ROS scavenging was mainly involved in the regulation of the enzyme antioxidant defense system and non-enzymatic antioxidant defense system through succinylation modification, thus eliminating excessive ROS. Protein succinylation of N. flagelliforme may play an important regulatory role in response to dehydration. The results are foundational, as they can inform future research into the mechanisms involved in the succinylation regulation mechanism of N. flagelliforme in response to dehydration. SIGNIFICANCE: The global succinylation network involved in response to dehydration in N. flagelliforme has been established. We found that many succinylated proteins were involved in photosynthesis, glucose metabolism and antioxidation. The global survey of succinylated proteins and the changes of succinylated levels in response to dehydration provided effective information for the drought tolerance mechanism in N. flagelliforme.
Collapse
Affiliation(s)
- Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Zheng Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Caixia Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Xiaorong Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Xiaofan Na
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
10
|
Xie X, Yan Y, Liu T, Chen J, Huang M, Wang L, Chen M, Li X. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104681. [PMID: 32980063 DOI: 10.1016/j.pestbp.2020.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.
Collapse
Affiliation(s)
- Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jun Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Meiqing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|