1
|
Zhang L, Chi W, Wang X, Li J, Li F, Ma Y, Zhang Q. miR-6884-5p inhibits proliferation and epithelial-mesenchymal transition in non-small cell lung cancer cells. Heliyon 2024; 10:e38428. [PMID: 39391483 PMCID: PMC11466542 DOI: 10.1016/j.heliyon.2024.e38428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is associated with a high mortality and morbidity rate. MicroRNAs participate in tumorigenesis, progression and metastasis of NSCLC. However, miR-6884-5p has not been previously studied. This study aimed to investigate the role of miR-6884-5p in NSCLC and explore its underlying mechanisms. Methods We used miR-6884-5p mimics and inhibitors to assess its effects in NSCLC. miR-6884-5p expression levels in NSCLC cell lines were quantified using qRT-PCR. Cell viability was determined using a cell-counting kit 8 assay. Western blot analysis was employed to measure apoptotic proteins. The impact of miR-6884-5p on cell proliferation was assessed via colony formation assay. Furthermore, Transwell assays were utilized to visualize and quantify the effects of miR-6884-5p on NSCLC migration and invasion. Results miR-6884-5p mimic significantly inhibited NSCLC cell proliferation to 71.21 % and 72.26 % of control at 5 days of culture time in H460 and HC9 cells (both p < 0.01), respectively, while miR-6884-5p inhibitor significantly promoted cell proliferation to 119.66 % and 126.44 % of control at 5 days of culture time in H460 and HC9 cells (both p < 0.05), respectively. In addition, miR-6884-5p promoted apoptosis by reducing the anti-apoptotic protein B-cell lymphoma 2 (BCL2) protein and increasing apoptotic protein BCL2 associated X protein (all p < 0.01 at least). Moreover, miR-6884-5p effectively suppressed transforming growth factor β1-induced epithelial-mesenchymal transition, as evidenced by the restored expression of E-cadherin (p < 0.01), N-cadherin (p < 0.01) and Vimentin (p < 0.05), leading to the inhibition of migration and invasion in NSCLC cell lines. Conclusions Our findings demonstrate that miR-6884-5p can inhibit NSCLC cell proliferation, migration, and invasion, suggesting its potential as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Lianyong Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Wei Chi
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Jingjing Li
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Yuxia Ma
- Department of Geriatrics, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) ward Ⅱ, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| |
Collapse
|
2
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024:1-17. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Wang C, Yang Y, Li D, Guan Y, Cao M, Nie M, Sun C, Fu W, Kong X. Immunological Roles of CCL18 in Pan‑Cancer and Its Potential Value in Endometrial Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01205-7. [PMID: 38816548 DOI: 10.1007/s12033-024-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Endometrial cancer (EC) is one of the most prevalent malignancies in the female reproductive system. However, the potential functions and mechanisms of immune-related genes in the onset and progression of EC remain unclear. The immune-related gene CCL18 has been implicated in apoptosis, proliferation, invasion, metastasis, and drug resistance in various types of tumors. Nevertheless, its role in pan-cancer has been poorly investigated, and its expression value and prognostic significance in endometrial cancer (EC) have not been explored. Therefore, the objective of this study was to identify potential immune-related prognostic biomarkers for EC by utilizing the cancer genome atlas (TCGA), immunology database and analysis portal (ImmPort) database, and Gene Expression Omnibus (GEO). Immunohistochemistry staining results from EC tissue chips demonstrated elevated expression levels of inflammatory chemokine protein 18 (CCL18) in EC compared to normal endometrium. This study offers a potential therapeutic strategy for EC treatment by identifying regulatory targets through microRNA sequencing data. Additionally, drug prediction was based on CCL18 targets. Furthermore, an analysis of CCL18 expression in pan-cancer was conducted, and the results revealed its high expression in various types of cancer, including EC and bladder cancer. Through analysis of the ATAC-seq data, we found that SIX1, SOX3, and TWIST2 may regulate CCL18 transcription by binding to the gene promoter of CCL18 in EC. This study indicated that CCL18 could be a potential biomarker in pan-cancer and EC.
Collapse
Affiliation(s)
- Cangxue Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuxiang Yang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Donghao Li
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yihao Guan
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - MengYuan Cao
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Manjie Nie
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Caowei Sun
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wenke Fu
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuhui Kong
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
4
|
Yang S, Luo Y, Zhou D, Xiang J, Xi X. RNA 5-Methylcytosine regulators are associated with cell adhesion and predict prognosis of endometrial cancer. Transl Cancer Res 2023; 12:2556-2571. [PMID: 37969377 PMCID: PMC10643971 DOI: 10.21037/tcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 11/17/2023]
Abstract
Background RNA methylation is a significant form of post-transcriptional modification that has been implicated in various diseases, including cancers. One prominent type of RNA methylation is 5-Methylcytosine (m5C), which primarily regulates RNA stability, transcription, and translation. However, the role of m5C-related gene regulation in cell adhesion within uterine corpus endometrial carcinoma (UCEC) remains unexplored. Therefore, the objective of this study was to investigate the association between RNA m5C methylation and UCEC and develop a prognostic predictive model to forecast survival outcomes in UCEC patients. Methods The RNA datasets were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The dataset was used to explore the interaction relationships of m5C regulators in UCEC. Unsupervised clustering analysis identified clusters with distinct m5C modification patterns. Different clusters underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment level analysis to investigate the effects of pathways related to m5C methylation, which were further validated through in vitro cellular experiments. A prognostic predictive model was developed using the least absolute shrinkage and selection operator (LASSO) and multivariate regression analysis. Results Two clusters with distinct m5C modification patterns were identified using unsupervised cluster analysis. Furthermore, the prognosis of cluster 2 was found to be worse. Enrichment analysis showed alterations in cell adhesion-related pathways in both clusters, as well as differences between the clusters. Through this analysis, we identified 25 genes with significant prognostic value. Finally, a prognostic predictive model comprising NSUN2 and YBX1 was constructed. Conclusions In conclusion, diverse m5C modification patterns display distinct cell adhesion properties in UCEC, which are correlated with prognosis and offer significant potential as prognostic markers for UCEC assessment. We developed a prognostic predictive model to accurately predict the prognosis of UCEC.
Collapse
Affiliation(s)
- Shimin Yang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Luo
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Zhou
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangdong Xiang
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Alqutami F, Hachim M, Hodgman C, Atiomo W. Transcriptomic analysis identifies four novel receptors potentially linking endometrial cancer with polycystic ovary syndrome and generates a transcriptomic atlas. Oncotarget 2023; 14:825-835. [PMID: 37737665 PMCID: PMC10515731 DOI: 10.18632/oncotarget.28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is associated with a 3 to 4-fold increased risk of endometrial cancer (EC), but molecular mechanisms are unclear. Upregulation of the IGF1 gene in PCOS endometrium may increase EC risk, but this is uncertain. We aimed to investigate links between EC and PCOS, by analysing publicly available transcriptomic data. The NCBI Gene Expression Omnibus was used to identify relevant studies. Differentially expressed genes (DEGs) were identified and analysed using Metascape to identify pathways of interest. PCOS DEGs that encode proteins secreted into blood were identified using the Human Protein Atlas blood protein database. EC DEGs that are cellular receptors were identified using EcoTyper. These were intersected to identify which EC receptors interact with PCOS secreted proteins. Seven receptors were identified in EC but only PTPRF, ITGA2, ITGA3 and ITGB4 genes were expressed on epithelial cells. Pathway enrichment of these genes showed that the major and common pathway involved was that of the PI3K-AKT signalling pathway which was consistent with a link between PCOS and EC. However, IGF1 was down regulated in PCOS and EC. These findings hold significant promise for improving our understanding of mechanistic pathways leading to EC in PCOS.
Collapse
Affiliation(s)
- Fatma Alqutami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| | - Charlie Hodgman
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - William Atiomo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, UAE
| |
Collapse
|
6
|
Bogaczyk A, Zawlik I, Zuzak T, Kluz M, Potocka N, Kluz T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int J Mol Sci 2023; 24:11489. [PMID: 37511248 PMCID: PMC10380838 DOI: 10.3390/ijms241411489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer is one of the most common cancers in developing and developed countries. Although the detection of this cancer is high at the early stages, there is still a lack of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the post-transcriptional regulation of genes responsible for the most important biological processes, which is why they are increasingly used as biomarkers in many types of cancer. Many studies have demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and their role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
7
|
Hamed AR, Yahya SMM, Nabih HK. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1117-1128. [PMID: 36651944 DOI: 10.1007/s00210-023-02385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major life-threatening primary liver malignancy in both sexes all over the world. Unfortunately, the majority of patients are diagnosed at later stages because HCC does not elicit obvious symptoms during its early incidence. Consequently, most individuals escape the first-line HCC treatments and are treated with chemotherapy. Regrettably, the therapeutic outcomes for those patients are usually poor because of the development of multidrug resistance phenomena. Furthermore, most anti-HCC therapies cause severe undesired side effects that notably interfere with the life quality of such patients. Accordingly, there is an important need to search for an alternative therapeutic drug or adjuvant which is more efficient with safe or even minimal side effects for HCC treatment. Melatonin was recently reported to exert intrinsic antitumor activity in different cancers. However, the regulatory pathways underlying the antitumor activity of melatonin are poorly understood in resistant liver cells. Furthermore, a limited number of studies have addressed the therapeutic role of melatonin in HCC cells resistant to doxorubicin chemotherapy. In this study, we investigated the antitumor effects of melatonin in doxorubicin-resistant HepG2 cells and explored the regulatory pivotal targets underlying these effects. To achieve our aim, an MTT assay was used to calculate the 50% inhibitory concentration of melatonin and evaluate its antiproliferative effect on resistant cells. Additionally, qRT-PCR was used to quantify genes having a role in drug resistance phenotype (ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2); apoptosis (caspases-3, and -7, Bcl2, Bax, and p53); anti-oxidation (NRF2); expression of melatonin receptors (MT1, MT2, and MT3); besides, programmed death receptor PD-1 gene. The active form of the caspase-3 enzyme was estimated by ELISA. A human inflammatory antibody membrane array was employed to quantify forty inflammatory factors expressed in treated cells. We observed that melatonin inhibited the proliferation of doxorubicin-resistant HepG2 cells in a dose-dependent manner after 24-h incubation time with a calculated IC50 greater than 10 mM (13.4 mM), the expression levels of genes involved in drug resistance response (ABCB1, ABCC1, ABCC5, and ABCG2) were downregulated. Also, the expression of caspase-3, Caspase-7, NRF2, and p53 genes were expressed at higher levels as compared to control (DMSO-treated cells). An active form of caspase-3 was confirmed by ELISA. Moreover, the anti-inflammatory effect of melatonin was detected through the calculated fold change to control which was reduced for various mediators that have a role in the inflammation pathway. The current findings introduce melatonin as a promising anti-cancer treatment for human-resistant HCC which could be used in combination with current chemotherapeutic regimens to improve the outcome and reduce the developed multidrug resistance.
Collapse
Affiliation(s)
- Ahmed R Hamed
- Chemistry of Medicinal Plants Department, and Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
8
|
Ajabnoor G, Alsubhi F, Shinawi T, Habhab W, Albaqami WF, Alqahtani HS, Nasief H, Bondagji N, Elango R, Shaik NA, Banaganapalli B. Computational approaches for discovering significant microRNAs, microRNA-mRNA regulatory pathways, and therapeutic protein targets in endometrial cancer. Front Genet 2023; 13:1105173. [PMID: 36704357 PMCID: PMC9872035 DOI: 10.3389/fgene.2022.1105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Endometrial cancer (EC) is a urogenital cancer affecting millions of post-menopausal women, globally. This study aims to identify key miRNAs, target genes, and drug targets associated with EC metastasis. The global miRNA and mRNA expression datasets of endometrial tissue biopsies (24 tumors +3 healthy tissues for mRNA and 18 tumor +4 healthy tissues for miRNAs), were extensively analyzed by mapping of DEGs, DEMi, biological pathway enrichment, miRNA-mRNA networking, drug target identification, and survival curve output for differentially expressed genes. Our results reveal the dysregulated expression of 26 miRNAs and their 66 target genes involved in focal adhesions, p53 signaling pathway, ECM-receptor interaction, Hedgehog signaling pathway, fat digestion and absorption, glioma as well as retinol metabolism involved in cell growth, migration, and proliferation of endometrial cancer cells. The subsequent miRNA-mRNA network and expression status analysis have narrowed down to 2 hub miRNAs (hsa-mir-200a, hsa-mir-429) and 6 hub genes (PTCH1, FOSB, PDGFRA, CCND2, ABL1, ALDH1A1). Further investigations with different systems biology methods have prioritized ALDH1A1, ABL1 and CCND2 as potential genes involved in endometrial cancer metastasis owing to their high mutation load and expression status. Interestingly, overexpression of PTCH1, ABL1 and FOSB genes are reported to be associated with a low survival rate among cancer patients. The upregulated hsa-mir-200a-b is associated with the decreased expression of the PTCH1, CCND2, PDGFRA, FOSB and ABL1 genes in endometrial cancer tissue while hsa-mir-429 is correlated with the decreased expression of the ALDH1A1 gene, besides some antibodies, PROTACs and inhibitory molecules. In conclusion, this study identified key miRNAs (hsa-mir-200a, hsa-mir-429) and target genes ALDH1A1, ABL1 and CCND2 as potential biomarkers for metastatic endometrial cancers from large-scale gene expression data using systems biology approaches.
Collapse
Affiliation(s)
- Ghada Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fai Alsubhi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraia Shinawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wisam Habhab
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Hussain S. Alqahtani
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Hisham Nasief
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel Bondagji
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Noor Ahmad Shaik, ; Babajan Banaganapalli,
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Noor Ahmad Shaik, ; Babajan Banaganapalli,
| |
Collapse
|
9
|
Thakur L, Thakur S. The interplay of sex steroid hormones and microRNAs in endometrial cancer: current understanding and future directions. Front Endocrinol (Lausanne) 2023; 14:1166948. [PMID: 37152960 PMCID: PMC10161733 DOI: 10.3389/fendo.2023.1166948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Endometrial cancer is a hormone-dependent malignancy, and sex steroid hormones play a crucial role in its pathogenesis. Recent studies have demonstrated that microRNAs (miRNAs) can regulate the expression of sex steroid hormone receptors and modulate hormone signaling pathways. Our aim is to provide an overview of the current understanding of the role of miRNAs in endometrial cancer regulated by sex steroid hormone pathways. Methods A thorough literature search was carried out in the PubMed database. The articles published from 2018 to the present were included. Keywords related to miRNAs, endometrial cancer, and sex steroid hormones were used in the search. Results Dysregulation of miRNAs has been linked to abnormal sex steroid hormone signaling and the development of endometrial cancer. Various miRNAs have been identified as modulators of estrogen and progesterone receptor expression, and the miRNA expression profile has been shown to be a predictor of response to hormone therapy. Additionally, specific miRNAs have been implicated in the regulation of genes involved in hormone-related signaling pathways, such as the PI3K/Akt/mTOR and MAPK/ERK pathways. Conclusion The regulation of sex steroid hormones by miRNAs is a promising area of research in endometrial cancer. Future studies should focus on elucidating the functional roles of specific miRNAs in sex steroid hormone signaling and identifying novel miRNA targets for hormone therapy in endometrial cancer management.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Thakur
- Origin LIFE Healthcare Solutions and Research Center, Chandigarh, India
- *Correspondence: Sunil Thakur,
| |
Collapse
|
10
|
Deng J, Liu S, Zhao L, Li Y, Shi J, Zhang H, Zhao Y, Han L, Wang H, Yan Y, Zhao H, Zou F. SND1 acts as a functional target of miR-330-5p involved in modulating the proliferation, apoptosis and invasion of colorectal cancer cells. Biochem Biophys Res Commun 2022; 615:116-122. [DOI: 10.1016/j.bbrc.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
|
11
|
Wang W, Zhang J, Fan Y, Zhang L. MiR-1306-5p predicts favorable prognosis and inhibits proliferation, migration, and invasion of colorectal cancer cells via PI3K/AKT/mTOR pathway. Cell Cycle 2022; 21:1491-1501. [PMID: 35416128 PMCID: PMC9278426 DOI: 10.1080/15384101.2022.2054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the occurrence and progression of colorectal cancer. Our study aims to explore the role of miR-1306-5p in cell malignant phenotypes of colorectal cancer cells. RT-qPCR was performed to assess the expression of miR-1306-5p in colorectal cancer samples and cell lines. The effects of miR-1306-5p on cell proliferation, migration, and invasion were evaluated through the CCK-8 assay, wound healing assay, and transwell invasion assay, respectively. Apoptosis was detected by flow cytometry. Luciferase reporter assay was used to predict the target gene of miR-1306-5p. Western blot was used to detect the expression levels of signal pathway molecules and target proteins. We found that miR-1306-5p was low-expressed in colorectal cancer tissues and cell lines, and its expression was also associated with colorectal cancer development and prognosis. MiR-1306-5p overexpression led to a decrease in colorectal cancer cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, it was discovered that SLCO2A1 was a target of miR-1306-5p. By targeting SLCO2A1, overexpression of miR-1306-5p could inhibit the PI3K/AKT/mTOR signaling pathway. Overexpression of miR-1306-5p inhibited the colorectal cancer cell malignant phenotypes via regulating PI3K/AKT/mTOR signaling pathway regulation by targeting SLCO2A1. Therefore, miR-1306-5p can be a prospective therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Jun Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - YunXiu Fan
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Li Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| |
Collapse
|
12
|
Catellani C, Cirillo F, Graziano S, Montanini L, Marmiroli N, Gullì M, Street ME. MicroRNA global profiling in cystic fibrosis cell lines reveals dysregulated pathways related with inflammation, cancer, growth, glucose and lipid metabolism, and fertility: an exploratory study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022133. [PMID: 35775757 PMCID: PMC9335447 DOI: 10.23750/abm.v93i3.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIM Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways. METHODS We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls. RESULTS In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling. CONCLUSIONS CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy, These authors contributed equally to this work
| | - Francesca Cirillo
- Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy, These authors contributed equally to this work
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Luisa Montanini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria E. Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Bao CH, Guo L. Retracted: miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway. Anticancer Agents Med Chem 2022; 22:864-873. [PMID: 34238170 DOI: 10.2174/1871520621666210707095833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
The article entitled “miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway”, by Chen-Hui Bao and Lin Guo, has been retracted on the request of the Author in light of the changes to the University’s promotion policy, due to which the article needs further content. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. Kindly see Bentham Science Policy on Article retraction at the link https://benthamscience.com/journals/anti-canceragents-in-medicinal-chemistry/editorial-policies/ Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure, or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.
Collapse
Affiliation(s)
- Chen-Hui Bao
- Department of General surgery, ShengJing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Lin Guo
- Department of General surgery, ShengJing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| |
Collapse
|
14
|
Jin Q, Jiang X, Du X, Hu W, Bai S, Wang X, Xu B, Zhao W. Integrated Transcriptome and Multiple Activated Pathways in Endometrial Cancer. Front Genet 2021; 12:680331. [PMID: 34925436 PMCID: PMC8678463 DOI: 10.3389/fgene.2021.680331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/07/2021] [Indexed: 12/05/2022] Open
Abstract
Because the incidence of endometrial cancer is notably increasing worldwide, it has become the leading gynecologic cancer in the United States. Standard treatment results in the loss of reproductive function in women of childbearing age. Furthermore, advanced cancer stages are associated with poor overall survival. The aim of this study was to explore the abnormal expression profile of genes during the development of endometrial cancer, which is essential to provide a better understanding of the mechanisms involved. Five pairs of endometrial cancer tissues and normal endometrial tissues were subjected to next-generation transcriptome sequencing technology. Quantitative real-time PCR (RT-qPCR) was performed to validate the expression profile of key differentially expressed genes (2.0-fold change, adj. p < 0.05) (DEGs) identified in the RNA-seq result. GO and KEGG pathways were used for bioinformatic analyses. The transcriptomic sequencing results showed 1153 DEGs, including 673 upregulated and 480 downregulated genes, in the EC specimens. Decreased expression of ID1, IGF1, GDF7, SMAD9, TGF-beta and WNT4, as well as GDF5, INHBA and ERBB4 overexpression, were confirmed in EC using RT-qPCR. Additionally, EC tissue exhibited marked enrichment in genes promoting cellular adhesion, proliferation, migration and plasma membrane. KEGG analysis revealed changes in various pathways, such as the TGF-beta, PI3K-Akt, Wnt, and estrogen pathways. Our data describe the molecular events involved in the pathogenesis of EC, which may be potential diagnostic markers and targets of therapeutic interventions.
Collapse
Affiliation(s)
- Qi Jin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xin Du
- Reproductive Medicine Center, 901th Hospital of PLA Joint Logistic Support Force, Hefei, China
| | - Weiping Hu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xian Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Xu
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- *Correspondence: Bo Xu, ; Weidong Zhao,
| | - Weidong Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- *Correspondence: Bo Xu, ; Weidong Zhao,
| |
Collapse
|
15
|
Liu Y, Qu HC. miR-138-5p inhibits proliferation and invasion in kidney renal clear cell carcinoma by targeting SINA3 and regulation of the Notch signaling pathway. J Clin Lab Anal 2021; 35:e23766. [PMID: 34586647 PMCID: PMC8605131 DOI: 10.1002/jcla.23766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The function of miR-138-5p as an oncogenic factor has been reported in certain cancers. This study was performed to analyze the potential involvement of miR-138-5p in kidney renal clear cell carcinoma (KIRC). METHODS The Cancer Genome Atlas (TCGA) database was used to explain the expression of miR-138-5p in cancer and paired non-cancer tissues of KIRC patients. Subsequently, miR-138-5p expression in KIRC tissues and cell lines, as well as that in normal tissues and normal renal tubular epithelial cell line, was detected. Artificial overexpressing of miR-138-5p was applied to observe its effect on the biological behaviors of KIRC cells. The target mRNA of miR-138-5p, SIN3A, was predicted and validated. Altered expression of miR-138-5p and SIN3A was introduced to confirm their functions in KIRC proliferation and invasion. RESULTS We showed that miR-138-5p was down-regulated in tumor tissues of KIRC patients comparing to adjacent healthy tissues and linked to dismal prognosis in patients. miR-138-5p could hinder KIRC proliferation and invasion, while artificial overexpression of SIN3A led to reversed trends. SIN3A was a target mRNA of miR-138-5p. miR-138-5p and SIN3A together affect the activation of the Notch signaling pathway. CONCLUSION This study evidenced that up-regulated miR-138-5p inhibits proliferation and invasion of KIRC cells involving the transcription of SIN3A and the following regulation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urological Surgery, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University, Shenyang, China
| | - Hong-Chen Qu
- Department of Urological Surgery, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep 2021; 24:800. [PMID: 34523695 PMCID: PMC8456314 DOI: 10.3892/mmr.2021.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is inversely associated with survival in several types of cancer. However, whether PLAC1 is involved in the progression of cervical cancer (CC) remains to be elucidated. Therefore, the present study aimed to evaluate the prognostic role of PLAC1 in CC by determining the relationship between clinicopathological factors, PLAC1 gene expression and survival prognosis using univariate and multivariate Cox proportional-hazards regression analyses. Similarly, Kaplan-Meier curves were evaluated with the log-rank test. Subsequently, gene set enrichment analysis was performed to compare the high- and low-PLAC1 expression phenotypes. Functional studies were further conducted in PLAC1-overexpressing HeLa cells and PLAC1-silenced MS751 cells, and western blotting was performed to determine whether PLAC1 promoted CC progression via epithelial-mesenchymal transition (EMT). The findings demonstrated that high expression of PLAC1 was associated with American Joint Committee on Cancer metastasis pathological score and suggested a poor overall survival. ‘mTOR complex 1 signaling’, ‘interferon α response’ and ‘hypoxia’ were differentially enriched in the high-PLAC1 phenotype. Furthermore, PLAC1 promoted the invasion of CC cells in vitro. E-cadherin expression was decreased in the PLAC1-overexpressing cells, accompanied by increased expression of the mesenchymal markers, Vimentin, MMP2 and Slug, and the opposite effects were observed in PLAC1-silenced cells. Taken together, the present results indicated that high expression of PLAC1 was associated with poor survival and PLAC1 promoted metastasis via EMT in CC.
Collapse
Affiliation(s)
- Rujun Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chan Sheng
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ruyue Ma
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Liwen Zhang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Lina Yang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Yaping Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
17
|
Li J, Liu M, Li X, Shi H, Sun S. Long noncoding RNA ZFAS1 suppresses chondrocytes apoptosis via miR-302d-3p/SMAD2 in osteoarthritis. Biosci Biotechnol Biochem 2021; 85:842-850. [PMID: 33686420 DOI: 10.1093/bbb/zbab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) seriously affects people's quality of life due to joint pain, stiffness, disability, and dyskinesia worldwide. Long noncoding RNA zinc finger antisense 1 (ZFAS1) is downregulated and tightly associated with proliferation, migration, apoptosis, and matrix synthesis of chondrocyte in OA. However, the molecular mechanisms of ZFAS1 in OA remain unknown. The expression correlation between ZFAS1, miR-302d-3p, and SMAD2 in OA tissues was analyzed by Pearson correlation analysis. ZFAS1 was a lower expression, and expedited proliferation and repressed apoptosis of chondrocytes. MiR-302d-3p was a direct target of ZFAS1. MiR-302d-3p hindered proliferation and facilitated apoptosis of chondrocytes. MiR-302d-3p partially reversed the effect of ZFAS1 on proliferation and apoptosis of chondrocytes. SMAD2 was positively regulated by the ZFAS1/miR-302d-3p. MiR-302d-3p-mediated proliferation and apoptosis were partly abrogated by targeting SMAD2. ZFAS1 promoted chondrocytes proliferation and repressed apoptosis possibly by regulating miR-302d-3p/SMAD2 axis, providing a potential target for OA treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China.,Department of Joint Surgery, Binzhou Medical University Hospital, Shandong, China
| | - Mingting Liu
- Department of Joint Surgery, Binzhou Medical University Hospital, Shandong, China
| | - Xianrang Li
- Department of Joint Surgery, Binzhou Medical University Hospital, Shandong, China
| | - Hui Shi
- Department of Joint Surgery, Binzhou Medical University Hospital, Shandong, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| |
Collapse
|
18
|
Lu N, Liu J, Ji C, Wang Y, Wu Z, Yuan S, Xing Y, Diao F. MiRNA based tumor mutation burden diagnostic and prognostic prediction models for endometrial cancer. Bioengineered 2021; 12:3603-3620. [PMID: 34252354 PMCID: PMC8806700 DOI: 10.1080/21655979.2021.1947940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Uterus Corpus Endometrial cancer (UCEC) is the sixth most common malignant tumor worldwide. In this research, we identified diagnostic and prognostic biomarkers to reflect patients’ immune microenvironment and prognostic. Various data of UCEC patients from the TCGA database were obtained. Firstly, patients were divided into a high tumor mutation burden (TMB) level group and a low TMB level group according to the level of TMB. Then, differentially expressed miRNAs between the two groups were obtained. LASSO logistic regression analysis was used to construct a diagnostic model to predict the level of TMB. Univariate, multivariate, and LASSO regression analysis were used to construct a prognostic risk signature (PRS) to predict the prognosis of UCEC patients. Twenty-one miRNAs were used to construct a diagnostic model for predicting TMB levels. The AUC values of ROC curves for 21-miRNA-based diagnostic models were 0.911 in the training set, 0.827 in the test set, and 0.878 in the entire set. This diagnostic model showed positive correlation with TMB, PDL1 expression, and the infiltration of immune cells. In addition, three prognostic miRNAs were finally used to construct the PRS. The PRS was related to the expression of multiple immune checkpoints and the infiltration of multiple immune cells. Furthermore, the PRS can also reflect the response to some commonly used chemotherapy regimens. We have established a miRNA-based diagnostic model and a prognostic model that can predict the prognosis of UCEC patients and their response to chemotherapy and immunotherapy, thus providing valuable information on the choice of treatment regimen.
Collapse
Affiliation(s)
- Nan Lu
- Department of Reproduction, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhipeng Wu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuning Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyang Diao
- Department of Reproduction, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051137. [PMID: 33800944 PMCID: PMC7961497 DOI: 10.3390/cancers13051137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation. Abstract The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.
Collapse
Affiliation(s)
- Amélia Favier
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
- Correspondence: (A.F.); (G.C.)
| | - Grégoire Rocher
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Romain Delangle
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Catherine Uzan
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Mathieu Castela
- Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France;
| | - Alex Duval
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Céline Mehats
- U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France;
| | - Geoffroy Canlorbe
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Correspondence: (A.F.); (G.C.)
| |
Collapse
|
20
|
Bian J, Xu Y, Wu F, Pan Q, Liu Y. Identification of a five-gene signature for predicting the progression and prognosis of stage I endometrial carcinoma. Oncol Lett 2020; 20:2396-2410. [PMID: 32782557 PMCID: PMC7400971 DOI: 10.3892/ol.2020.11798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is often diagnosed at an early clinical stage based on abnormal vaginal bleeding. However, the prognosis of UCEC is poor. The present study was conducted to identify novel tumor grade-related genes with the potential to predict the prognosis and progression of UCEC. A total of three gene expression microarray datasets were downloaded from the Gene Expression Omnibus database, and one RNA-sequencing dataset with corresponding clinical information of patients with UCEC was obtained from The Cancer Genome Atlas database. In summary, 1,447 differentially expressed genes (DEGs) were identified between endometrial cancerous tissues and normal endometrial tissues. Weighted gene co-expression network analysis was performed to assess the associations between DEGs and clinical traits. In total, five genes were found to be highly associated with the tumorigenesis and prognosis of UCEC. Among them, BUB1 mitotic checkpoint serine/threonine kinase B, cyclin B1, cell-division cycle protein 20 and non-SMC condensing I complex subunit G were involved in cell cycle regulation pathways, and DLG-associated protein 5 was involved in the Notch receptor 3 signaling pathway based on functional enrichment analyses. Of the five genes, four were highly expressed in endometrial cancerous tissues compared with normal endometrial tissues at the protein level. In addition, the higher expression of these genes predicted a higher tumor grade and worse overall survival. In conclusion, the present study revealed a 5-gene signature that can be used to predict the progression of UCEC.
Collapse
Affiliation(s)
- Jia Bian
- Department of Gynecology and Obstetrics, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Yuzi Xu
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, P.R. China
| | - Fei Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qiangwei Pan
- Department of Gynecology and Obstetrics, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
21
|
Shi S, Tan Q, Feng F, Huang H, Liang J, Cao D, Wang Z. Identification of core genes in the progression of endometrial cancer and cancer cell-derived exosomes by an integrative analysis. Sci Rep 2020; 10:9862. [PMID: 32555395 PMCID: PMC7299953 DOI: 10.1038/s41598-020-66872-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer is one of the most prevalent tumors of the female reproductive system causing serious health effects to women worldwide. Although numerous studies, including analysis of gene expression profile and cellular microenvironment have been reported in this field, pathogenesis of this disease remains unclear. In this study, we performed a system bioinformatics analysis of endometrial cancer using the Gene Expression Omnibus (GEO) datasets (GSE17025, GSE63678, and GSE115810) to identify the core genes. In addition, exosomes derived from endometrial cancer cells were also isolated and identified. First, we analyzed the differentially expressed genes (DEGs) between endometrial cancer tissues and normal tissues in clinic samples. We found that HAND2-AS1, PEG3, OGN, SFRP4, and OSR2 were co-expressed across all 3 datasets. Pathways analysis showed that several pathways associated with endometrial cancer, including "p53 signaling pathway", "Glutathione metabolism", "Cell cycle", and etc. Next, we selected DEGs with highly significant fold change and co-expressed across the 3 datasets and validated them in the TCGA database using Gene Expression Profiling Interactive Analysis (GEPIA). Finally, we performed a survival analysis and identified four genes (TOP2A, ASPM, EFEMP1, and FOXL2) that play key roles in endometrial cancer. We found up-regulation of TOP2A and ASPM in endometrial cancer tissues or cells, while EFEMP1 and FOXL2 were down-regulated. Furthermore, we isolated exosomes from the culturing supernatants of endometrial cancer cells (Ishikawa and HEC-1-A) and found that miR-133a, which regulates expression of FOXL2, were present in exosomes and that they could be delivered to normal endometrial cells. The common DEGs, pathways, and exosomal miRNAs identified in this study might play an important role in progression as well as diagnosis of endometrial cancer. In conclusion, our results provide insights into the pathogenesis and risk assessment of endometrial cancer. Even so, further studies are required to elucidate on the precise mechanism of action of these genes in endometrial cancer.
Collapse
Affiliation(s)
- Shuang Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| | - Fuqiang Feng
- Agricultural Economic Service Center of Wuzhen Town, Tongxiang, Zhejiang, P. R. China
| | - Heping Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Dingren Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|