1
|
Upadhyay PR, Swope VB, Starner RJ, Koikov L, Abdel-Malek ZA. Journey through the spectacular landscape of melanocortin 1 receptor. Pigment Cell Melanoma Res 2024; 37:667-680. [PMID: 38857302 PMCID: PMC11479856 DOI: 10.1111/pcmr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
The physiological role of α-melanocyte stimulating hormone in regulating integumental pigmentation of many vertebrate species has been recognized since the 1960's. However, its physiological significance for human pigmentation remained enigmatic until the 1990's. α-Melanocyte stimulating hormone and related melanocortins are synthesized locally in the skin, primarily by keratinocytes, in addition to the pituitary gland, and therefore act as paracrine factors for melanocytes. Human melanocytes express the melanocortin 1 receptor, which recognizes α-melanocyte stimulating hormone and the related adrenocorticotropic hormone as agonists. This review summarizes the current knowledge of the pleotropic effects of the activated melanocortin 1 receptor that maintain human melanocyte homeostasis by regulating melanogenesis and the response to environmental stressors, mainly solar radiation. Certain allelic variants of the melanocortin 1 receptor gene are associated with specific pigmentary phenotypes in various human populations. Variants associated with red hair phenotype compromise the function of the encoded receptor. Activation of the human melanocortin 1 receptor regulates eumelanin synthesis and enhances DNA damage response of melanocytes to solar radiation and oxidative stressors. We describe how synthetic selective melanocortin 1 receptor agonists can be efficacious as sunless tanning agents, for treatment of vitiligo and photosensitivity disorders, and for prevention of skin cancer, including melanoma.
Collapse
Affiliation(s)
- P R Upadhyay
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - V B Swope
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - R J Starner
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - L Koikov
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Z A Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
3
|
Wang JH, Hwang SJ, Lee SK, Choi Y, Byun CK, Son CG. Anti-Melanogenic Effects of Fractioned Cynanchum atratum by Regulation of cAMP/MITF Pathway in a UVB-Stimulated Mice Model. Cells 2023; 12:1390. [PMID: 37408224 DOI: 10.3390/cells12101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Based on traditional pharmacological applications and partial in vitro data, Cynanchum atratum (CA) is proposed to act on skin whitening. However, its functional evaluation and underlying mechanisms have yet to be identified. This study aimed to examine the anti-melanogenesis activity of CA fraction B (CAFB) on UVB-induced skin hyperpigmentation. Forty C57BL/6j mice were exposed to UVB (100 mJ/cm2, five times/week) for eight weeks. After irradiation, CAFB was applied to the left ear once a day for 8 weeks (the right ear served as an internal control). The results showed that CAFB significantly reduced melanin production in the ear skin, as indicated by the gray value and Mexameter melanin index. In addition, CAFB treatment notably decreased melanin production in α-MSH-stimulated B16F10 melanocytes, along with a significant reduction in tyrosinase activity. Cellular cAMP (cyclic adenosine monophosphate), MITF (microphthalmia-associated transcription factor), and tyrosinase-related protein 1 (TRP1) were also noticeably downregulated by CAFB. In conclusion, CAFB is a promising ingredient for treating skin disorders caused by the overproduction of melanin and its underlying mechanisms involving the modulation of tyrosinase, mainly mediated by the regulation of the cAMP cascade and MITF pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yujin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si 27136, Republic of Korea
| | - Chang Kyu Byun
- Department of Applied Chemistry, Daejeon University, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
4
|
Zhu C, Li T, Wang Z, Li Z, Wei J, Han H, Yuan D, Cai M, Shi J. MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS NANO 2023; 17:8723-8733. [PMID: 37115703 DOI: 10.1021/acsnano.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitiligo, a common skin disease that seriously affects 0.5-2.0% of the worldwide population, lacks approved therapeutics due to a wide range of adverse side effects. As a key regulator of skin pigmentation, MC1R may be an effective therapeutic target for vitiligo. Herein, we report an MC1R peptide agonist that directly self-assembles into nanofibrils that form a hydrogel matrix under normal physiological conditions. This hydrogel exhibits higher stability than free peptides, sustained release, rapid recovery from shear-thinning, and resistance to enzymatic proteolysis. Furthermore, this peptidal MC1R agonist upregulates tyrosinase, tyrosinase-related protein-1 (TYRP-1), and tyrosinase-related protein-2 (TYRP-2) to stimulate melanin synthesis. More importantly, MC1R agonist hydrogel promotes skin pigmentation in mice more potently than free MC1R agonist. This study supports the development of this MC1R agonist hydrogel as a promising pharmacological intervention for vitiligo.
Collapse
Affiliation(s)
- Ci Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Tingting Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhuole Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hong Han
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| |
Collapse
|
5
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
6
|
Kai-yuan J, Yi-Wei Z, Ru-jun W, Khan IM, Yun-hai Z. A genome-wide integrated analysis of lncRNA-mRNA in melanocytes from white and brown skin hair boer goats (Capra aegagrus hircus). Front Vet Sci 2022; 9:1009174. [PMID: 36406077 PMCID: PMC9669430 DOI: 10.3389/fvets.2022.1009174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in many biological processes and have been extensively researched. Nonetheless, literature focusing on the roles of lncRNA in melanocytes is limited. Melanocytes are located in the basal layer of the epidermis and determine the color of an animal's skin and hair by producing melanin. The mechanisms of melanogenesis remain unclear. Here, melanocytes from Boer goat skins were successfully isolated and verified using morphological observation, dopamine staining, silver ammonia staining, and immunohistochemical staining in vitro. Phenotypic testing revealed that melanocytes isolated from goat skins with white and brown hairs showed significant differences in proliferation, migration, and melanogenesis (**P < 0.01). RNA sequencing was performed with the isolated melanocytes, and through bioinformatic analysis, several candidate lncRNAs and mRNAs involved in stage-specific melanogenesis were identified. Functional enrichment analysis indicated that miRNA precursors and cis-regulatory effects of lncRNAs were deeply dissected using the function prediction software. Multiple lncRNA–mRNA networks were presumed to be involved in melanocyte migration, proliferation, and melanogenesis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. This research provided novel bioinformatic insights into the roles of lncRNAs in mammalian pigmentation.
Collapse
Affiliation(s)
- Ji Kai-yuan
- Anhui Key Laboratory of Genetic Resources Protection and Biological Breeding for Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhao Yi-Wei
- Anhui Key Laboratory of Genetic Resources Protection and Biological Breeding for Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wen Ru-jun
- Anhui Key Laboratory of Genetic Resources Protection and Biological Breeding for Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ibrar Muhammad Khan
- Anhui Key Laboratory of Genetic Resources Protection and Biological Breeding for Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Zhang Yun-hai
- Anhui Key Laboratory of Genetic Resources Protection and Biological Breeding for Livestock and Poultry, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Linquan Comprehensive Experimental Station of Anhui Agricultural University, Anhui Agricultural University, Linquan, China
- *Correspondence: Zhang Yun-hai
| |
Collapse
|
7
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
8
|
Xie B, Chen Y, Hu Y, Zhao Y, Luo H, Xu J, Song X. Targets Exploration of Hydroxychloroquine for Pigmentation and Cell Protection Effect in Melanocytes: The Clue for Vitiligo Treatment. Drug Des Devel Ther 2022; 16:1011-1024. [PMID: 35411132 PMCID: PMC8994563 DOI: 10.2147/dddt.s350387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The treatment of vitiligo is often challenging to dermatologists. There is ample evidence to suggest that hydroxychloroquine (HCQ) is effective for vitiligo treatment; nonetheless, the underlying mechanism remains unknown. In the present study, we sought to uncover the molecular targets of HCQ by an integrated network-based pharmacologic and transcriptomic approach. Methods The potential targets of HCQ were retrieved from databases based on the crystal structure. Targets related to vitiligo were screened and intersected with potential targets of HCQ. A protein-protein interaction network of the intersected targets was generated. Interactions between the targets were verified by molecular docking. Moreover, human vitiligo immortalized melanocytes (PIG3V) were evaluated after treatment with HCQ (1μg/mL) for 24h. The total RNA of PIG3V was extracted and determined by RNA-seq transcriptomics for differential gene expression analysis. Network pharmacology was then used to identify the relationships between putative targets of HCQ and differentially expressed genes. Results Molecular docking analysis revealed four putative key targets (ACHE, PNMT, MC1R, and VDR) of HCQ played important roles in vitiligo treatment. According to the transcriptomic results, the melanosomal biogenesis-related gene BLOC1S5 was upregulated 138005.020 fold after HCQ treatment. Genes related to protein repair (MSRB3) and anti-ultraviolet (UV) effect (UVSSA) were upregulated 4.253 and 2.603 fold, respectively, after HCQ treatment. Conclusion The expression of the BLOC1S5 gene is significantly upregulated, indicating upregulated melanosomal biogenesis after HCQ treatment. In addition, HCQ yields a protective effect on melanocytes by upregulating genes associated with damaged protein repair (MSRB3) and anti-UV effect (UVSSA). The protective effects of HCQ are mediated by binding to putative targets ACHE, PNMT, MC1R, and VDR according to network pharmacology and docking verification.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Yi Chen
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, People's Republic of China
| | - Yebei Hu
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, People's Republic of China
| | - Yan Zhao
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, People's Republic of China
| | - Haixin Luo
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, People's Republic of China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
9
|
High Proportions of Radiation-Resistant Strains in Culturable Bacteria from the Taklimakan Desert. BIOLOGY 2022; 11:biology11040501. [PMID: 35453702 PMCID: PMC9030528 DOI: 10.3390/biology11040501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Radiation-resistant extremophiles have frequently been found in the Taklimakan Desert, which is known for its harsh conditions. However, there is no systemic study investigating the diversity and proportion of radiation-resistant strains among culturable bacteria. The results of this study revealed the distribution of culturable bacteria in the Taklimakan Desert and indicated high proportions of radiation-resistant strains in the culturable bacteria. The study helps to better understand the ecological origin of radio-resistance and to quantitatively describe the desert as a common habitat for radiation-resistant extremophiles. Abstract The Taklimakan Desert located in China is the second-largest shifting sand desert in the world and is known for its harsh conditions. Types of γ-rays or UV radiation-resistant bacterial strains have been isolated from this desert. However, there is no information regarding the proportions of the radiation-resistant strains in the total culturable microbes. We isolated 352 bacterial strains from nine sites across the Taklimakan Desert from north to south. They belong to Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. The phylum Actinobacteria was the most predominant in abundance and Firmicutes had the highest species richness. Bacteroidetes had the lowest abundance and was found in four sites only, while the other three phyla were found in every site but with different distribution profiles. After irradiating with 1000 J/m2 and 6000 J/m2 UV-C, the strains with survival rates higher than 10% occupied 72.3% and 36.9% of all culturable bacteria, respectively. The members from Proteobacteria had the highest proportions, with survival rates higher than 10%. After radiation with 10 kGy γ-rays, Kocuria sp. TKL1057 and Planococcus sp. TKL1152 showed higher radiation-resistant capabilities than Deinococcus radiodurans R1. Besides obtaining several radiation-resistant extremophiles, this study measured the proportions of the radiation-resistant strains in the total culturable microbes for the first time. This study may help to better understand the origin of radioresistance, especially by quantitatively comparing proportions of radiation-resistant extremophiles from different environments in the future.
Collapse
|
10
|
Guida S, Guida G, Goding CR. MC1R Functions, Expression, and Implications for Targeted Therapy. J Invest Dermatol 2021; 142:293-302.e1. [PMID: 34362555 DOI: 10.1016/j.jid.2021.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
The G protein-coupled MC1R is expressed in melanocytes and has a pivotal role in human skin pigmentation, with reduced function in human genetic variants exhibiting a red hair phenotype and increased melanoma predisposition. Beyond its role in pigmentation, MC1R is increasingly recognized as promoting UV-induced DNA damage repair. Consequently, there is mounting interest in targeting MC1R for therapeutic benefit. However, whether MC1R expression is restricted to melanocytes or is more widely expressed remains a matter of debate. In this paper, we review MC1R function and highlight that unbiased analysis suggests that its expression is restricted to melanocytes, granulocytes, and the brain.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Gabriella Guida
- Molecular Biology Section, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Colin Ronald Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 2021; 35:6-17. [PMID: 34333860 DOI: 10.1111/pcmr.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Bo Xie
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Zhang J, Mou Y, Gong H, Chen H, Xiao H. Microphthalmia-Associated Transcription Factor in Senescence and Age-Related Diseases. Gerontology 2021; 67:708-717. [PMID: 33940580 DOI: 10.1159/000515525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/27/2021] [Indexed: 02/05/2023] Open
Abstract
Although microphthalmia-associated transcription factor (MITF) has been known for decades as a key regulator for melanocytic differentiation, recent studies expanded its other roles in multiple biological processes. Among these newfound roles, the relationship between MITF and aging is attractive; however, the underlying mechanism remains elusive. Here, we review the documented cues that highlight the implication of MITF in the aging process and particularly discuss the possible mechanisms underlying the participation of MITF in cellular senescence. First, it summarizes the association of MITF with melanocytic senescence, including the roles of MITF in cell cycle regulation, DNA damage repair, oxidative stress response, and the generation of senescence-associated secretory phenotype. Then, it collects the information involving MITF-related senescent changes in nonmelanocytes, such as retinal pigment epithelium cells, osteoclasts, and cardiomyocytes. This review may deepen the understanding of MITF function and be helpful to develop new strategies for improving geriatric health.
Collapse
Affiliation(s)
- Jian Zhang
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Mou
- Geroscience and Chronic Disease Department, The 8th Municipal Hospital for the People, Chengdu, China
| | - Hui Gong
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Honghan Chen
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Xiao
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Koikov L, Starner RJ, Swope VB, Upadhyay P, Hashimoto Y, Freeman KT, Knittel JJ, Haskell-Luevano C, Abdel-Malek ZA. Development of hMC1R Selective Small Agonists for Sunless Tanning and Prevention of Genotoxicity of UV in Melanocytes. J Invest Dermatol 2021; 141:1819-1829. [PMID: 33609553 DOI: 10.1016/j.jid.2020.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
Activation of the human melanocortin 1 receptor (hMC1R) expressed on melanocytes by α-melanocortin plays a central role in regulating human pigmentation and reducing the genotoxicity of UV by activating DNA repair and antioxidant defenses. For the development of a hMC1R-targeted photoprotection strategy, we designed tetra- and tripeptide agonists with modifications that provide the necessary lipophilicity and hMC1R selectivity to be effective drugs. These peptides proved to be superior to most of the existing analogs of the physiological tridecapeptide α-melanocortin because of their small size and high hMC1R selectivity. Testing on primary cultures of human melanocytes showed that these peptides are highly potent with prolonged stimulation of melanogenesis, enhanced repair of UV-induced DNA photoproducts, and reduced apoptosis. One of the tripeptides, designated as LK-514 (5), with a molecular weight of 660 Da, has unprecedented (>100,000) hMC1R selectivity when compared with the other melanocortin receptors hMC3R, hMC4R, and hMC5R, and increases pigmentation (sunless tanning) in a cultured, three-dimensional skin model. These new analogs should be efficacious in preventing skin cancer, including melanoma, and treatment of skin disorders, such as vitiligo and polymorphic light eruptions.
Collapse
Affiliation(s)
- Leonid Koikov
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Renny J Starner
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Viki B Swope
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Parth Upadhyay
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuki Hashimoto
- Department of Dermatology, Toho University, Tokyo, Japan
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - James J Knittel
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Low-Temperature Argon Plasma Regulates Skin Moisturizing and Melanogenesis-Regulating Markers through Yes-Associated Protein. Int J Mol Sci 2021; 22:ijms22041895. [PMID: 33672928 PMCID: PMC7918577 DOI: 10.3390/ijms22041895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
Extensive water loss and melanin hyperproduction can cause various skin disorders. Low-temperature argon plasma (LTAP) has shown the possibility of being used for the treatment of various skin diseases, such as atopic dermatitis and skin cancer. However, the role of LTAP in regulating skin moisturizing and melanogenesis has not been investigated. In this study, we aimed to determine the effect of LTAP on yes-associated protein (YAP), a major transcriptional coactivator in the Hippo signaling pathway that is involved in skin moisturizing and melanogenesis-regulating markers. In normal human epidermal keratinocytes (NHEKs), the human epidermal keratinocyte line HaCaT, and human dermal fibroblasts (HDFs), we found that LTAP exhibited increased expression levels of YAP protein. In addition, the expression levels of filaggrin (FLG), which is involved in natural moisturizing factors (NMFs), and hyaluronic acid synthase (HAS), transglutaminase (TGM), and involucrin (IVL), which regulate skin barrier and moisturizing, were also increased after exposure to LTAP. Furthermore, collagen type I alpha 1 and type III alpha 1 (COL1A1, COL3A1) were increased after LTAP exposure, but the expression level of matrix metalloproteinase-3 (MMP-3) was reduced. Moreover, LTAP was found to suppress alpha-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in murine melanoma B16F10 cells and normal human melanocytes (NHEMs). LTAP regulates melanogenesis of the melanocytes through decreased YAP pathway activation in a melanocortin 1 receptor (MC1R)-dependent manner. Taken together, our data show that LTAP regulates skin moisturizing and melanogenesis through modulation of the YAP pathway, and the effect of LTAP on the expression level of YAP varies from cell to cell. Thus, LTAP might be developed as a treatment method to improve the skin barrier, moisture content, and wrinkle formation, and to reduce melanin generation.
Collapse
|
15
|
Malik U, Chan LY, Cai M, Hruby VJ, Kaas Q, Daly NL, Craik DJ. Development of novel frog‐skin peptide scaffolds with selectivity towards melanocortin receptor subtypes. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uru Malik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Minying Cai
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
16
|
Boo YC. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020; 8:biomedicines8090322. [PMID: 32882959 PMCID: PMC7555855 DOI: 10.3390/biomedicines8090322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; ; Tel.: +82-53-420-4946
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
17
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|