1
|
Lang T, Geaghan S, Loh TP, Mak C, Papassotiriou I, Kyriakopoulou LG. Considerations for applying emerging technologies in paediatric laboratory medicine. Clin Chem Lab Med 2024; 62:1938-1949. [PMID: 39044644 DOI: 10.1515/cclm-2023-1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Emerging technology in laboratory medicine can be defined as an analytical method (including biomarkers) or device (software, applications, and algorithms) that by its stage of development, translation into broad routine clinical practice, or geographical adoption and implementation has the potential to add value to clinical diagnostics. Paediatric laboratory medicine itself may be considered an emerging area of specialisation that is established relatively recently following increased appreciation and understanding of the unique physiology and healthcare needs of the children. Through four clinical (neonatal hypoglycaemia, neonatal hyperbilirubinaemia, sickle cell disorder, congenital adrenal hyperplasia) and six technological (microassays, noninvasive testing, alternative matrices, next generation sequencing, exosome analysis, machine learning) illustrations, key takeaways of application of emerging technology for each area are summarised. Additionally, nine key considerations when applying emerging technology in paediatric laboratory medicine setting are discussed.
Collapse
Affiliation(s)
- Tim Lang
- Department of Blood Sciences, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Sharon Geaghan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Chloe Mak
- Division of Chemical Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR, China
| | - Ioannis Papassotiriou
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | |
Collapse
|
2
|
Chen Z, Shang Y, Ou Y, Shen C, Cao Y, Hu H, Yang R, Liu T, Liu Q, Song M, Zong D, Xiang X, Peng Y, Ouyang R. Obstructive Sleep Apnea Plasma-Derived Exosomes Mediate Cognitive Impairment Through Hippocampal Neuronal Cell Pyroptosis. Am J Geriatr Psychiatry 2024; 32:922-939. [PMID: 38290937 DOI: 10.1016/j.jagp.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is associated with impaired cognitive function. Exosomes are secreted by most cells and play a role in OSA-associated cognitive impairment (CI). The aim of this study was to investigate whether OSA plasma-derived exosomes cause CI through hippocampal neuronal cell pyroptosis, and to identify exosomal miRNAs in OSA plasma-derived. MATERIALS AND METHODS Plasma-derived exosomes were isolated from patients with severe OSA and healthy comparisons. Daytime sleepiness and cognitive function were assessed using the Epworth Sleepiness Scale (ESS) and the Beijing version of the Montreal Cognitive Assessment Scale (MoCA). Exosomes were coincubated with mouse hippocampal neurons (HT22) cells to evaluate the effect of exosomes on pyroptosis and inflammation of HT22 cells. Meanwhile, exosomes were injected into C57BL/6 male mice via caudal vein, and then morris water maze was used to evaluate the spatial learning and memory ability of the mice, so as to observe the effects of exosomes on the cognitive function of the mice. Western blot and qRT-PCR were used to detect the expressions of Gasdermin D (GSDMD) and Caspase-1 to evaluate the pyroptosis level. The expression of IL-1β, IL-6, IL-18 and TNF-α was detected by qRT-PCR to assess the level of inflammation. Correlations of GSDMD and Caspase-1 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. In addition, plasma exosome miRNAs profile was identified, followed by Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS Compared to healthy comparisons, body mass index (BMI), apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and ESS scores were increased in patients with severe OSA, while lowest oxygen saturation during sleep (LSaO2), mean oxygen saturation during sleep (MSaO2) and MoCA scores were decreased. Compared to the PBS group (NC) and the healthy comparison plasma-derived exosomes (NC-EXOS), the levels of GSDMD and Caspase-1 and IL-1β, IL-6, IL-18 and TNF-α were increased significantly in the severe OSA plasma-derived exosomes (OSA-EXOS) coincubated with HT22 cells. Compared to the NC and NC-EXOS groups, the learning and memory ability of mice injected with OSA-EXOS was decreased, and the expression of GSDMD and Caspase-1 in hippocampus were significantly increased, along with the levels of IL-1β, IL-6, IL-18 and TNF-α. Spearman correlation analysis found that clinical AHI in HCs and severe OSA patients was positively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups, while negatively correlated with clinical MoCA. At the same time, clinical MoCA in HCs and severe OSA patients was negatively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups. A unique exosomal miRNAs profile was identified in OSA-EXOS group compared to the NC-EXOS group, in which 28 miRNAs were regulated and several KEGG and GO pathways were identified. CONCLUSIONS The results of this study show a hypothesis that plasma-derived exosomes from severe OSA patients promote pyroptosis and increased expression of inflammatory factors in vivo and in vitro, and lead to impaired cognitive function in mice, suggesting that OSA-EXOS can mediate CI through pyroptosis of hippocampal neurons. In addition, exosome cargo from OSA-EXOS showed a unique miRNAs profile compared to NC-EXOS, suggesting that plasma exosome associated miRNAs may reflect the differential profile of OSA related diseases, such as CI.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology (YS), Zigui County Traditional Chinese Medicine Hospital, Zigui, China
| | - Yanru Ou
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Chong Shen
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ying Cao
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Hui Hu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ruibing Yang
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Qingqing Liu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Min Song
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Dandan Zong
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Xudong Xiang
- Department of Emergency (XX), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Peng
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China.
| | - Ruoyun Ouyang
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Chen F, Fu Y, Tang B, Tao B, Wang Y, Huang Y, Chen T, Yu C, Jiang C, Lui S, Cai X, Lu Y, Yan Z. Altered cerebral white matter network topology and cognition in children with obstructive sleep apnea. Sleep Med 2024; 118:63-70. [PMID: 38613858 DOI: 10.1016/j.sleep.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES The study aimed to explore the underlying mechanisms of OSA-related cognitive impairment by investigating the altered topology of brain white matter networks in children with OSA. METHODS Graph theory was used to examine white matter networks' network topological properties in 46 OSA and 31 non-OSA children. All participants underwent MRI, polysomnography, and cognitive testing. The effects of the obstructive apnea-hypopnea index (OAHI) on topological properties of white matter networks and network properties on cognition were studied using hierarchical linear regression. Mediation analyses were used to explore whether white matter network properties mediated the effects of OAHI on cognition. RESULTS Children with OSA had significantly higher assortativity than non-OSA children. Furthermore, OAHI was associated with the nodal properties of several brain regions, primarily in the frontal and temporal lobes. The relationship between OAHI and verbal comprehension index was mediated through clustering coefficients in the right temporal pole of the superior temporal gyrus. CONCLUSIONS OSA affects the development of white matter networks in children's brains. Besides, the mediating role of white matter network properties between the OAHI and the verbal comprehension index provided neuroimaging evidence of impaired cognitive function in children with OSA.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Biqiu Tang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610044, China
| | - Bo Tao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610044, China
| | - Yu Wang
- Department of Radiology, Ningbo First Hospital, Ningbo, 315010, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinyin Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Changcan Jiang
- Department of Otolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Su Lui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610044, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, China; Wenzhou Key Laboratory of Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Yang L, Liu S, He Y, Gan L, Ni Q, Dai A, Mu C, Liu Q, Chen H, Lu H, Sun R. Exosomes regulate SIRT3-related autophagy by delivering miR-421 to regulate macrophage polarization and participate in OSA-related NAFLD. J Transl Med 2024; 22:475. [PMID: 38764033 PMCID: PMC11103849 DOI: 10.1186/s12967-024-05283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
PURPOSE To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.
Collapse
Affiliation(s)
- Li Yang
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China.
| | - Shijie Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Yan He
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Lulu Gan
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qing Ni
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Anni Dai
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Changhuan Mu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Qian Liu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongyan Chen
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Hongying Lu
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| | - Ruixue Sun
- Hypertension Center, Yan 'an Hospital of Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
- Kunming Technical Diagnosis and Treatment Center for Refractory Hypertension, Kunming Medical University, 245 Renmin East Road, Panlong District, Kunming City, 650000, Yunnan Province, China
| |
Collapse
|
5
|
Recoquillon S, Ali S, Justeau G, Riou J, Martinez MC, Andriantsitohaina R, Gagnadoux F, Trzepizur W. Small Extracellular Vesicles Harboring PD-L1 in Obstructive Sleep Apnea. Int J Mol Sci 2024; 25:3208. [PMID: 38542182 PMCID: PMC10970061 DOI: 10.3390/ijms25063208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSA) has been associated with increased cancer incidence and aggressiveness. One hypothesis to support this association is the implication of immune response, particularly the programmed cell death pathway, formed by the receptor PD-1 and its ligand PD-L1. Recent studies have shown dysregulation of this pathway in severe OSA patients. It has also been shown that small extracellular vesicles (sEVs) carrying PD-L1 induce lymphocyte dysfunction. Thus, the aim of our study was to analyze the expression of PD-L1 on sEVs of OSA patients and to evaluate the role of sEVs on lymphocyte activation and cytotoxicity. Circulating sEVs were isolated from OSA patients and the control group. Lymphocytes were isolated from the control group. Circulating sEVs were characterized by western blot, nanotracking analysis, and flow cytometry and were incubated with lymphocytes. Our results show no differences in the quantity and composition of sEVs in OSA patients and no significant effects of sEVs in OSA patients on lymphocyte activation and cytotoxicity. These results suggest that OSA does not modify PD-L1 expression on sEVs, which does not contribute to dysregulation of cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Sylvain Recoquillon
- SFR ICAT, Team Carme, MitoVasc Laboratory, UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France; (S.R.); (F.G.)
| | - Sakina Ali
- INSERM 1063, University of Angers, 49045 Angers, France;
| | - Grégoire Justeau
- Department of Respiratory and Sleep Medicine, Angers University Hospital, 49100 Angers, France;
| | - Jérémie Riou
- Delegation for Clinical Research and Innovation, Angers University Hospital, 49100 Angers, France;
| | - M. Carmen Martinez
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France; (M.C.M.); (R.A.)
| | - Ramaroson Andriantsitohaina
- PhyMedExp, Montpellier University, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France; (M.C.M.); (R.A.)
| | - Frédéric Gagnadoux
- SFR ICAT, Team Carme, MitoVasc Laboratory, UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France; (S.R.); (F.G.)
- Department of Respiratory and Sleep Medicine, Angers University Hospital, 49100 Angers, France;
| | - Wojciech Trzepizur
- SFR ICAT, Team Carme, MitoVasc Laboratory, UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France; (S.R.); (F.G.)
- Department of Respiratory and Sleep Medicine, Angers University Hospital, 49100 Angers, France;
| |
Collapse
|
6
|
Khalyfa A, Marin JM, Sanz-Rubio D, Lyu Z, Joshi T, Gozal D. Multi-Omics Analysis of Circulating Exosomes in Adherent Long-Term Treated OSA Patients. Int J Mol Sci 2023; 24:16074. [PMID: 38003263 PMCID: PMC10671639 DOI: 10.3390/ijms242216074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Jose M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
- Department of Health Management and Informatics, MU Institute for Data Science and Informatics and Christopher S Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - David Gozal
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
7
|
Puech C, Badran M, Runion AR, Barrow MB, Cataldo K, Gozal D. Cognitive Impairments, Neuroinflammation and Blood-Brain Barrier Permeability in Mice Exposed to Chronic Sleep Fragmentation during the Daylight Period. Int J Mol Sci 2023; 24:9880. [PMID: 37373028 DOI: 10.3390/ijms24129880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). In murine models, chronic SF can impair endothelial function and induce cognitive declines. These deficits are likely mediated, at least in part, by alterations in Blood-brain barrier (BBB) integrity. Male C57Bl/6J mice were randomly assigned to SF or sleep control (SC) conditions for 4 or 9 weeks and in a subset 2 or 6 weeks of normal sleep recovery. The presence of inflammation and microglia activation were evaluated. Explicit memory function was assessed with the novel object recognition (NOR) test, while BBB permeability was determined by systemic dextran-4kDA-FITC injection and Claudin 5 expression. SF exposures resulted in decreased NOR performance and in increased inflammatory markers and microglial activation, as well as enhanced BBB permeability. Explicit memory and BBB permeability were significantly associated. BBB permeability remained elevated after 2 weeks of sleep recovery (p < 0.01) and returned to baseline values only after 6 weeks. Chronic SF exposures mimicking the fragmentation of sleep that characterizes patients with OSA elicits evidence of inflammation in brain regions and explicit memory impairments in mice. Similarly, SF is also associated with increased BBB permeability, the magnitude of which is closely associated with cognitive functional losses. Despite the normalization of sleep patterns, BBB functional recovery is a protracted process that merits further investigation.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO 65201, USA
| | - Max B Barrow
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Kylie Cataldo
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
8
|
Chen J, Mei X. Sensitivity to remifentanil and its predictive factor in male patients with moderate to severe obstructive sleep apnea syndrome. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:347-355. [PMID: 37164918 PMCID: PMC10930082 DOI: 10.11817/j.issn.1672-7347.2023.220579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 05/12/2023]
Abstract
OBJECTIVES Obstructive sleep apnea syndrome (OSAS) is associated with increased risk of postoperative complications, which is possibly related to increased sensitivity to opioid. However, the effect of increased sensitivity to opioids in patients with OSAS remains controversial. This study aims to investigate whether male patients with moderate to severe OSAS have increased sensitivity to opioid remifentanil and its related predictive factors, so as to provide a reference for the rational use of opioids in patients with OSAS. METHODS This study was a prospective study. From December 28, 2021 to October 15, 2022, a total of 61 male patients aged 22 to 60 years old, American Society of Anesthesiologists (ASA) status I and II, who underwent nasopharyngeal surgery under general anesthesia, were selected. According to STOP-BANG questionnaire score and apnea-hypopnea index (AHI), the patients were divided into an OSAS group (n=39) and a control group (n=22). The pupil diameter (PD) of the patients was measured by hand-held monocular pupillometer, and the perception threshold (PT) and pain tolerance threshold (PTT) of the patients were measured by somatosensory evoked potential stimulator. The initial PD, PT, and PTT were measured in a quiet environment and recorded as PD0, PT0, and PTT0. Changes in PD, PT, PTT, respiration, and consciousness were recorded after remifentanil infusion. Age, body mass index (BMI), smoking, AHI, minimal oxygen saturation, and percentage of sleep time spent with oxygen saturation <90% (T90) were included as independent variables in multiple linear regression equations to analyze the possible predictors of increased opioid sensitivity in patients with moderate to severe OSAS. RESULTS There were no significant differences in PD0, PT0 and PTT0 between the OSAS group and the control group (all P>0.05). After remifentanil infusion, there was no significant difference in the rate of PT change between the 2 groups (P>0.05). The change rate of PTT and PD in the OSAS group was significantly higher than that in the control group (P<0.05 and P<0.001, respectively), PD in the OSAS group was significantly lower than that in the control group (P<0.001). During remifentanil infusion, there were no significant differences in the incidence of respiratory depression and the distribution of observer's assessment of alertness/sedation (OAA/S) scores between the 2 groups (both P>0.05), and there were no changes in mental status and airway support in the patients of the 2 groups. Multiple linear regression showed that T90 was positively correlated with miosis rate (β=0.597, 95% CI 0.269 to 0.924, P<0.05) and the rate of PTT change (β=0.458, 95% CI 0.116 to 0.800, P<0.05). However, minimal oxygen saturation, age, BMI, smoking, and AHI were not correlated with PD change rate and PTT change rate in the OSAS patients (all P>0.05). CONCLUSIONS Male patients with moderate to severe OSAS have increased sensitivity to remifentanil, the duration of nocturnal desaturation may be its predictive factor. Male patients with moderate to severe OSAS with a longer duration of nocturnal hypoxia are more sensitive to remifentanil, and the use of opioids in these patients should be more cautious in clinical.
Collapse
Affiliation(s)
- Jia Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Xi Mei
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
9
|
Research progress on the role of exosomes in obstructive sleep apnea-hypopnea syndrome-related atherosclerosis. Sleep Med Rev 2022; 66:101696. [PMID: 36174425 DOI: 10.1016/j.smrv.2022.101696] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Atherosclerosis, a multifactorial disease with complicated pathogenesis, is the main cause of CVD, underlying several major adverse cardiovascular events. Obesity is the main cause of obstructive sleep apnea (OSA) and a significant risk for atherosclerosis. OSA is an independent risk factor for CVD. Recent research has focused on understanding the underlying molecular mechanisms by which OSA influences atherosclerosis pathogenesis. The role of exosomes in this process has attracted considerable attention. Exosomes are a type of extracellular vesicles (EV) that are released from many cells (both healthy and diseased) and mediate cell-to-cell communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells, thereby modulating the functions of target cells and tissues. Intermittent hypoxia in OSA alters the exosomal carrier in circulation and promotes the permeability and dysfunction of endothelial cells, which have been associated with the pathogenesis of atherosclerosis. This review discusses the potential roles of exosomes and exosome-derived molecules in the development and progression of OSA-related atherosclerosis. Additionally, we explore the possible mechanisms underlying OSA-related atherosclerosis and provide new insights for the development of novel exosome-based therapeutics for OSA-related atherosclerosis and CVD.
Collapse
|
10
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
11
|
Cheng Y, Wang T, Zhang T, Yi S, Zhao S, Li N, Yang Y, Zhang F, Xu L, Shan B, Xu X, Xu J. Increased blood-brain barrier permeability of the thalamus and the correlation with symptom severity and brain volume alterations in schizophrenia patients. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1025-1034. [PMID: 35738480 DOI: 10.1016/j.bpsc.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cumulative evidence of microvascular dysfunction has suggested the blood-brain barrier (BBB) disruption in schizophrenia, while the direct in vivo evidence from patients is inadequate. In this study, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods, we tried to test the hypothesis that there was increased BBB permeability in schizophrenia patients, and correlated with the clinical characters, and brain volumetric alterations. METHODS Structural MRI and DCE-MRI data from 29 schizophrenia patients and 18 age- and sex- matched controls (HC) were obtained. We calculated the volume transfer constant (Ktrans) value and compared the difference between two groups. The regions with the abnormal Ktrans value were extracted as ROIs (thalamus), and the correlation with the clinical characters and grey matter volume were analysed. RESULTS The results revealed that, compared with the HC, the volume transfer constant (Ktrans) value of the bilateral thalamus in the schizophrenia group was increased (p < 0.001). There were significant positive correlations between thalamic mean Ktrans value with disease duration (p < 0.05) and symptom severity (p < 0.001). Analysis of the thalamic subregions revealed that the BBB disruption was significant in pulvinar, especially the medial pulvinar nucleus (PuM) and lateral pulvinar nucleus (PuL) (p < 0.001). The Ktrans value of the whole brain, thalamus, and thalamic subregions was negatively correlated with their volume separately. CONCLUSION These results provided the first in vivo evidence of BBB disruption of thalamus in schizophrenia patients, and the BBB dysfunction might contribute to the pathological brain structural alterations in schizophrenia.
Collapse
Affiliation(s)
- Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032; Yunnan Clinical Research Centre for Mental Health, Kunming, China, 650032.
| | - Ting Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Tianhao Zhang
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Shu Yi
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Shilun Zhao
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Na Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Yifan Yang
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China, 650223
| | - Baoci Shan
- Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China, 650032.
| |
Collapse
|
12
|
Endothelial Heterogeneity in Development and Wound Healing. Cells 2021; 10:cells10092338. [PMID: 34571987 PMCID: PMC8469713 DOI: 10.3390/cells10092338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Collapse
|
13
|
Zolotoff C, Bertoletti L, Gozal D, Mismetti V, Flandrin P, Roche F, Perek N. Obstructive Sleep Apnea, Hypercoagulability, and the Blood-Brain Barrier. J Clin Med 2021; 10:jcm10143099. [PMID: 34300265 PMCID: PMC8304023 DOI: 10.3390/jcm10143099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of intermittent hypoxia (IH) and is recognized as an independent risk factor for vascular diseases that are mediated by a multitude of mechanistic pathophysiological cascades including procoagulant factors. The pro-coagulant state contributes to the development of blood clots and to the increase in the permeability of the blood-brain barrier (BBB). Such alteration of BBB may alter brain function and increase the risk of neurodegenerative diseases. We aim to provide a narrative review of the relationship between the hypercoagulable state, observed in OSA and characterized by increased coagulation factor activity, as well as platelet activation, and the underlying neural dysfunction, as related to disruption of the BBB. We aim to provide a critical overview of the existing evidence about the effect of OSA on the coagulation balance (characterized by increased coagulation factor activity and platelet activation) as on the BBB. Then, we will present the emerging data on the effect of BBB disruption on the risk of underlying neural dysfunction. Finally, we will discuss the potential of OSA therapy on the coagulation balance and the improvement of BBB.
Collapse
Affiliation(s)
- Cindy Zolotoff
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Correspondence: ; Tel.: +33-477-421-452
| | - Laurent Bertoletti
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Médecine Vasculaire et Thérapeutique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women’s and Children’s Hospital, University of Missouri, Columbia, MO 65201, USA;
| | - Valentine Mismetti
- Service de Pneumologie et d’Oncologie Thoracique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Pascale Flandrin
- Laboratoire d’Hématologie, Hôpital Nord, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Frédéric Roche
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Physiologie Clinique et de l’Exercice, Centre VISAS, CHU Saint Etienne, F-42270 Saint-Priest-en-Jarez, France
| | - Nathalie Perek
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
| |
Collapse
|
14
|
Tan HL, Kaditis AG. Phenotypic variance in pediatric obstructive sleep apnea. Pediatr Pulmonol 2021; 56:1754-1762. [PMID: 33543838 DOI: 10.1002/ppul.25309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
It is crucial that clinicians understand what underpins the considerable phenotypic variance in pediatric obstructive sleep apnea syndrome (OSAS), if they are to implement individually tailored phenotype-based approaches to diagnosis and management. This review summarizes the current literature on how disease severity, comorbidities, genetic and environmental/lifestyle factors interact to determine the overall OSAS phenotype. The first part discusses the impact of these factors on OSAS-related morbidity in the context of otherwise healthy children, whilst the second half details children with complex conditions, particularly focusing on the anatomical and functional abnormalities predisposing to upper airway obstruction unique to each condition. One can then understand the need for a multidimensional assessment strategy for pediatric OSAS; one that incorporates the history, physical examination, sleep study results, and biomarkers to enable precise stratification, so vital for effective determination of the timing and the nature of the therapeutic interventions required.
Collapse
Affiliation(s)
- Hui-Leng Tan
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Athanasios G Kaditis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine and Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
15
|
Sanz-Rubio D, Khalyfa A, Qiao Z, Ullate J, Marin JM, Kheirandish-Gozal L, Gozal D. Cell-Selective Altered Cargo Properties of Extracellular Vesicles Following In Vitro Exposures to Intermittent Hypoxia. Int J Mol Sci 2021; 22:ijms22115604. [PMID: 34070558 PMCID: PMC8198838 DOI: 10.3390/ijms22115604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with cardiovascular and metabolic dysfunction. However, the mechanisms underlying these morbidities remain poorly delineated. Extracellular vesicles (EVs) mediate intercellular communications, play pivotal roles in a multitude of physiological and pathological processes, and could mediate IH-induced cellular effects. Here, the effects of IH on human primary cells and the release of EVs were examined. Microvascular endothelial cells (HMVEC-d), THP1 monocytes, THP1 macrophages M0, THP1 macrophages M1, THP1 macrophages M2, pre-adipocytes, and differentiated adipocytes (HAd) were exposed to either room air (RA) or IH for 24 h. Secreted EVs were isolated and characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. The effects of each of the cell-derived EVs on endothelial cell (EC) monolayer barrier integrity, on naïve THP1 macrophage polarity, and on adipocyte insulin sensitivity were also evaluated. IH did not alter EVs cell quantal release, but IH-EVs derived from HMVEC-d (p < 0.01), THP1 M0 (p < 0.01) and HAd (p < 0.05) significantly disrupted HMVEC-d monolayer integrity, particularly after H2O2 pre-conditioning. IH-EVs from HMVEC-d and THP1 M0 elicited M2-polarity changes did not alter insulin sensitivity responses. IH induces cell-selective changes in EVs cargo, which primarily seem to target the emergence of endothelial dysfunction. Thus, changes in EVs cargo from selected cell sources in vivo may play causal roles in some of the adverse outcomes associated with OSA.
Collapse
Affiliation(s)
- David Sanz-Rubio
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain;
| | - Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
- Correspondence: ; Tel.: +1-573-884-7685
| | - Zhuanhong Qiao
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - Jorge Ullate
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - José M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28029 Madrid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| | - David Gozal
- Department of Child Health, Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA; (D.S.-R.); (Z.Q.); (J.U.); (L.K.-G.); (D.G.)
| |
Collapse
|
16
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
17
|
Leakage of astrocyte-derived extracellular vesicles in stress-induced exhaustion disorder: a cross-sectional study. Sci Rep 2021; 11:2009. [PMID: 33479350 PMCID: PMC7820323 DOI: 10.1038/s41598-021-81453-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with stress-induced exhaustion disorder (SED) demonstrate cognitive dysfunction similar to patients with minor traumatic brain injury (TBI). We have previously detected elevated concentrations of astrocyte-derived extracellular vesicles (EVs) in patients with TBI. As such, we hypothesized that astrocyte-derived EVs could be higher in patients with SED than in patients with major depressive disorder (MDD) and healthy controls. Patients with SED (n = 31), MDD (n = 31), and healthy matched controls (n = 61) were included. Astrocyte-derived EVs (previously known as microparticles) were measured in plasma with flow cytometry and labeled against glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4). In addition, platelet EVs and their CD40 ligand expression were measured. Patients with SED had significantly higher concentrations of AQP4 and GFAP-positive EVs and EVs co-expressing AQP4/GFAP than patients with MDD and healthy controls. Patients with MDD had significantly higher concentrations of GFAP-positive EVs and EVs co-expressing AQP4/GFAP than healthy controls. Platelet EVs did not differ between groups. CD40 ligand expression was significantly higher in patients with SED and MDD than in controls. In conclusion, the present study suggests that patients with SED, and to some extent, patients with MDD, have increased leakage of astrocyte-derived EVs through the blood–brain barrier.
Collapse
|
18
|
Oceja E, Rodríguez P, Jurado MJ, Luz Alonso M, del Río G, Villar MÁ, Mediano O, Martínez M, Juarros S, Merino M, Corral J, Luna C, Kheirandish-Gozal L, Gozal D, Durán-Cantolla J. Validity and Cost-Effectiveness of Pediatric Home Respiratory Polygraphy for the Diagnosis of Obstructive Sleep Apnea in Children: Rationale, Study Design, and Methodology. Methods Protoc 2021; 4:9. [PMID: 33477929 PMCID: PMC7838960 DOI: 10.3390/mps4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) in children is a prevalent, albeit largely undiagnosed disease associated with a large spectrum of morbidities. Overnight in-lab polysomnography remains the gold standard diagnostic approach, but is time-consuming, inconvenient, and expensive, and not readily available in many places. Simplified Home Respiratory Polygraphy (HRP) approaches have been proposed to reduce costs and facilitate the diagnostic process. However, evidence supporting the validity of HRP is still scarce, hampering its implementation in routine clinical use. The objectives were: Primary; to establish the diagnostic and therapeutic decision validity of a simplified HRP approach compared to PSG among children at risk of OSA. Secondary: (a) Analyze the cost-effectiveness of the HRP versus in-lab PSG in evaluation and treatment of pediatric OSA; (b) Evaluate the impact of therapeutic interventions based on HRP versus PSG findings six months after treatment using sleep and health parameters and quality of life instruments; (c) Discovery and validity of the urine biomarkers to establish the diagnosis of OSA and changes after treatment.
Collapse
Affiliation(s)
- Esther Oceja
- Domiciliary Hospitalization, Sleep Unit, OSI Araba University Hospital, 01004 Vitoria, Spain;
| | - Paula Rodríguez
- Research Service and Bioaraba Research Institute, OSI Araba University Hospital, UPV/EHU, 01004 Vitoria, Spain;
| | - María José Jurado
- Sleep Unit, Hospital Universitario Valle de Hebrón, 08035 Barcelona, Spain;
| | - Maria Luz Alonso
- Sleep Unit, Complejo Hospitalario de Burgos, 09006 Burgos, Spain
| | | | | | - Olga Mediano
- Sleep Unit, Hospital de Guadalajara, 19002 Guadalajara, Spain;
| | - Marian Martínez
- Sleep Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Santiago Juarros
- Sleep Unit, Hospital Universitario de Valladolid, 47012 Valladolid, Spain;
| | - Milagros Merino
- Sleep Unit, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Jaime Corral
- Sleep Unit, Complejo Hospitalario de Cáceres, 100003 Cáceres, Spain;
| | - Carmen Luna
- Sleep Unit, Hospital Universitario 12 de Octubre, 280035 Madrid, Spain;
| | - Leila Kheirandish-Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (L.K.-G.); (D.G.)
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (L.K.-G.); (D.G.)
| | - Joaquín Durán-Cantolla
- Research Service and Bioaraba Research Institute, OSI Araba University Hospital, UPV/EHU, 01004 Vitoria, Spain;
| |
Collapse
|
19
|
Gu X, Zhu J. Roles of Exosomes and Exosomal MicroRNAs in Postoperative Sleep Disturbance. Nat Sci Sleep 2021; 13:1363-1375. [PMID: 34354381 PMCID: PMC8331078 DOI: 10.2147/nss.s310351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Postoperative sleep disturbance (PSD) often occurs in elderly patients after major surgery and exerts harmful effects on postoperative recovery. PSD may increase the incidence of postoperative fatigue, severe anxiety and depression, pain sensitivity, and cognitive dysfunction, which can cause or aggravate neurodegenerative diseases via amyloid aggregation and tau accumulation. Exosomes are important carriers that mediate the transfer of active substances and genetic information among cells. Recent evidence has shown that exosomes are involved in the pathogenesis of end-organ morbidity caused by sleep disorders via increasing amyloid plaque formation, transmitting tau protein, regulating neuroinflammation, and increasing blood-brain barrier permeability. Additionally, exosomes may be useful for delivering therapeutic genetic materials, such as microRNAs (miRNAs) and proteins, to exert neuroprotective effects and reduce cognitive impairment. However, the molecular mechanisms underlying this process remain to be fully elucidated. This review focuses on exosome-related pathways and the modulatory role of exosomal miRNAs on the pathogenesis of sleep disturbance and neurodegeneration. Moreover, we discuss the advantages of reducing neurotoxic proteins via exosomal intervention and miRNA regulation. Future research in exosome administration may offer new insights into PSD-related pathomechanisms and therapeutics.
Collapse
Affiliation(s)
- Xiangyi Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
20
|
Polsek D, Cash D, Veronese M, Ilic K, Wood TC, Milosevic M, Kalanj-Bognar S, Morrell MJ, Williams SCR, Gajovic S, Leschziner GD, Mitrecic D, Rosenzweig I. The innate immune toll-like-receptor-2 modulates the depressogenic and anorexiolytic neuroinflammatory response in obstructive sleep apnoea. Sci Rep 2020; 10:11475. [PMID: 32651433 PMCID: PMC7351955 DOI: 10.1038/s41598-020-68299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The increased awareness of obstructive sleep apnoea’s (OSA) links to Alzheimer’s disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks’ exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2−/−,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.
Collapse
Affiliation(s)
- Dora Polsek
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | - Katarina Ilic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Milan Milosevic
- School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mary J Morrell
- The National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Srecko Gajovic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,Department of Neurology, Guy's and St Thomas' Hospital (GSTT) and Clinical Neurosciences, KCL, London, UK.,Sleep Disorders Centre, GSTT, London, UK
| | - Dinko Mitrecic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK. .,Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
21
|
Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: a pilot study. Sci Rep 2020; 10:11309. [PMID: 32647186 PMCID: PMC7347951 DOI: 10.1038/s41598-020-68374-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/08/2020] [Indexed: 01/23/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by repeated episodes of hypoxia during the night. The severity of the disorder can be evaluated using an apnea–hypopnea index (AHI). The physiological consequences are mainly cardiovascular and neuronal dysfunctions. One hypothesis to explain such associated neurological disorders is disruption of the blood–brain barrier (BBB), which protects the brain from endovascular cytotoxic compounds. We selected two subgroups of volunteers from the PROOF cohort study (France), a group of patients suffering newly diagnosed severe OSAS (AHI > 30/h) and a group showing no sleep apnea (AHI < 5/h). We exposed a human in vitro BBB model of endothelial cells (HBEC-5i) with sera of patients with and without OSAS. After exposure, we measured the apparent BBB permeability as well as tight junction and ABC transporter expression using whole cell ELISA. We showed that after incubation with sera from OSAS patients, there was a loss of integrity in the human in vitro BBB model; this was reflected by an increase in permeability (43%; p < 0.001) and correlated with a 50% and 40% decrease in tight junction protein expression of ZO-1 and claudin-5, respectively. At the same time, we observed an upregulation in Pgp protein expression (52%) and functionality, and a downregulation in BCRP expression (52%). Our results demonstrated that severe BBB disorder after exposure to sera from OSAS patients was reflected by an opening of the BBB.
Collapse
|