1
|
Ahn TH, Lee JS, Kim SY, Lee SB, Kim W, Kruglik I, Yi KH. Application of dual-frequency ultrasound for reduction of perilesional edema and ecchymosis after rhinoseptoplasty. J Cosmet Dermatol 2024; 23:830-838. [PMID: 37877460 DOI: 10.1111/jocd.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVES Biological aspect and clinical research demonstrated that dual-frequency ultrasound (local dynamic micro-massage, LDM) waves of very high frequency can significantly modify cellular signaling providing anti-inflammatory and anti-fibrotic effects. During the recent past, these waves were successfully applied for the treatment of various inflammatory skin conditions, hypertrophic scars, and chronical wounds. Since the main complications after rhinoseptoplasty are caused by excessive inflammatory reactions and development of fibrosis along nasal implants which can lead to a revision rhinoseptoplasty, in this retrospective multicenter blinded study we have evaluated the efficacy of LDM ultrasound for the treatment of the postoperative perilesional ecchymosis and edema in patients after rhinoseptoplasty. METHODS Twenty-four patients received daily LDM treatment (study group) for 5 days starting from the first day postoperative, whereas 24 patients (control group) were treated with conventional ice packs. Dynamic reduction of the postoperative perilesional ecchymosis and edema was followed up, and the total duration of these side effects was determined within specific paranasal anatomical areas. RESULTS Post-rhinoseptoplasty ecchymosis and edema were observed in the areas of anterior cheek, lower eyelids, and upper eyelids. Duration of the postoperative perilesional edema was significantly reduced in the group treated with LDM (1.9 ± 0.9 days) compared with control group (4.5 ± 2.1 days). Duration of the ecchymosis was also significantly reduced in LDM group (2.8 ± 1.4 days) compared with controls (7.4 ± 2.8 days). Postoperative patient satisfaction in LDM-treated and control groups was 3.1 ± 1.3 and 1.5 ± 0.7, respectively, demonstrating significantly higher satisfaction in LDM-treated group. CONCLUSIONS This study proved that the post-rhinoseptoplasty group treated with LDM ultrasound showed a significantly shorter duration of the postsurgical perilesional ecchymosis and edema, with no substantial adverse effects other than those observed in the control group. It can be suggested that ultrasound treatment can serve as an alternative option for the noninvasive management of postoperative perilesional ecchymosis and edema.
Collapse
Affiliation(s)
- Tae-Hwan Ahn
- Fresh Facial Aesthetic Surgery and ENT Clinic, Seoul, Korea
| | - Je Seong Lee
- Eastern Virginia Medical School, Norfolk, Virginia, USA
| | | | | | | | - Ilja Kruglik
- Scientific and Development Department, Wellcomet GmbH, Karlsruhe, Germany
| | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
- Maylin Clinic (Apgujeong), Seoul, Korea
| |
Collapse
|
2
|
Lin DA, Abujamra BA, Revah S, Nattkemper L, Morrison B, Romanelli P, Jozic I. Downregulation of Caveolae-Associated Proteins in Psoriasis: A Case Series Study. JID INNOVATIONS 2024; 4:100265. [PMID: 38445230 PMCID: PMC10914522 DOI: 10.1016/j.xjidi.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
We have previously identified that a structural membrane protein Caveolin-1 (Cav1) is involved in the regulation of aberrant keratinocyte proliferation and differentiation. The aim of this study was to elucidate the role of Cav1, Caveolin-2 (Cav2), and Cavin-1 in the pathogenesis of psoriasis vulgaris and between psoriasis subtypes. We utilized human biopsies from validated cases of psoriasis vulgaris (n = 21) at the University of Miami Hospital and compared the expression of Cav1, Cav2, and Cavin-1 by immunohistochemistry staining with that in normal healthy age-/sex-/location-matched skin (n = 15) and chronic spongiotic dermatitis skin samples (as control inflammatory skin condition) and quantified using QuPath. Distinct subtypes of psoriasis included guttate, inverse, nail, plaque, palmoplantar, and pustular. All biopsy samples exhibited a trend toward downregulation of Cav1, with nail, plaque, and palmoplantar psoriasis exhibiting the most pronounced effects. Only nail and pustular psoriasis samples exhibited significant downregulation of Cav2 and Cavin-1, suggesting Cav1 to be the main caveolar contributor to the pathogenesis of psoriasis. Together, these data support caveolae as pathophysiological targets in nail and pustular psoriasis, whereas Cav1 seems to be a general biomarker of multiple subtypes of psoriasis.
Collapse
Affiliation(s)
- Deborah A. Lin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Beatriz Abdo Abujamra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie Revah
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Leigh Nattkemper
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Brian Morrison
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Paolo Romanelli
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
3
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Takamura N, Yamaguchi Y. Involvement of caveolin-1 in skin diseases. Front Immunol 2022; 13:1035451. [PMID: 36532050 PMCID: PMC9748611 DOI: 10.3389/fimmu.2022.1035451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
The skin is the outermost layer and largest organ in the human body. Since the skin interfaces with the environment, it has a variety of roles, including providing a protective barrier against external factors, regulating body temperature, and retaining water in the body. It is also involved in the immune system, interacting with immune cells residing in the dermis. Caveolin-1 (CAV-1) is essential for caveolae formation and has multiple functions including endocytosis, lipid homeostasis, and signal transduction. CAV-1 is known to interact with a variety of signaling molecules and receptors and may influence cell proliferation and migration. Several skin-related disorders, especially those of the inflammatory or hyperproliferative type such as skin cancers, psoriasis, fibrosis, and wound healing, are reported to be associated with aberrant CAV-1 expression. In this review, we have explored CAV-1 involvement in skin physiology and skin diseases.
Collapse
|
5
|
Cho K, Yang KE, Nam SB, Lee SI, Yeo EJ, Choi JS. Shotgun proteomics of extracellular matrix in late senescent human dermal fibroblasts reveals a down-regulated fibronectin-centered network. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExtracellular matrix (ECM) proteins play a pivotal role in cell growth and differentiation. To characterize aged ECM proteins, we compared the proteomes by shotgun method of young (passage #15) and late senescent (passage #40) human dermal fibroblasts (HDFs) using SDS-PAGE coupled with LC–MS/MS. The relative abundance of identified proteins was determined using mol% of individual proteins as a semi-quantitative index. Fifteen ECM proteins including apolipoprotein B (APOB) and high-temperature requirement factor 1 (HTRA1) were up-regulated, whereas 50 proteins including fibronectin 1 (FN1) and vitronectin (VTN) were down-regulated in late senescent HDFs. The identified ECM proteins combined with plasma membrane were queried to construct the protein–protein interaction network using Ingenuity Pathways Analysis, resulting in a distinct FN1-centered network. Of differentially abundant ECM proteins in shotgun proteomics, the protein levels of FN1, VTN, APOB, and HTRA1 were verified by immunoblot analysis. The results suggest that the aging process in HDFs might be finally involved in the impaired FN1 regulatory ECM network combined with altered interaction of neighboring proteins. Shotgun proteomics of highly aged HDFs provides insight for further studies of late senescence-related alterations in ECM proteins.
Collapse
|
6
|
Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. Int J Mol Sci 2022; 23:ijms23073828. [PMID: 35409189 PMCID: PMC8998946 DOI: 10.3390/ijms23073828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.
Collapse
|
7
|
Wang LF, Ling DY, Huang MX, Tao LW, Tong QX, Hou Y, Li H, Chen Z, Zhang BZ, Lu HT, Wang YF, Zhang XG. Influence of atherosclerosis on the molecular expression of the TRPC1/BK signal complex in the aortic smooth muscles of mice. Exp Ther Med 2022; 23:4. [PMID: 34815756 PMCID: PMC8593874 DOI: 10.3892/etm.2021.10926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is one a disease that seriously endangers human health. Previous studies have demonstrated that transient receptor potential channel-1 (TRPC1)/large conductance Ca2+ activated K+ channel (BK) signal complex is widely distributed in arteries. Therefore, it was hypothesized that TRPC1-BK signal complex may be a new target for the treatment of AS-related diseases. Apolipoprotein E-/- (ApoE-/-) mice were used to establish an atherosclerotic animal model in the present study, and the association between AS and the TRPC1-BK signal complex was examined. The present study aimed to compare the differences in the expression levels of mRNAs and proteins of the TRPC1-BK signal complex expressed in the aortic vascular smooth muscle tissue, between mice with AS and control mice. There were 10 mice in each group. Reverse transcription PCR, western blotting and immunohistochemistry were used to detect the differences in the mRNA and protein expression levels of TRPC1, BKα (the α subunit of BK) and BKβ1 (the β1 subunit of BK). The mRNA expression level of TRPC1 in AS model mice was significantly higher compared with that in the control group (P<0.05). However, the mRNA expression levels of BKα and BKβ1 were lower compared with those in the controls (both P<0.01). The mice in the ApoE-/- group successfully developed AS. In this group, the protein expression level of TRPC1 was significantly higher than that in the control group (P<0.01), while the protein expression levels of BKα and BKβ1 were lower compared with those in the control group (P<0.01 and P<0.05, respectively). Collectively, it was identified that the protein and mRNA expression levels of the TRPC1/BK signal complex in the aortic vascular smooth muscle tissue could be influenced by the development of AS in mice. Hence, the TRPC1/BK signal complex may be a potential therapeutic target for the prevention and treatment of AS-related complications in the future.
Collapse
Affiliation(s)
- Lian-Fa Wang
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Dong-Yun Ling
- Department of Cardiology, The Second People's Hospital of Hefei City, Hefei, Anhui 230011, P.R. China
| | - Meng-Xun Huang
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Li-Wei Tao
- Department of Cardiothoracic Surgery, The Second People's Hospital of Fuyang City, Fuyang, Anhui 236000, P.R. China
| | - Quan-Xiu Tong
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Yong Hou
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Hua Li
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Zhen Chen
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Bang-Zhu Zhang
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Hong-Tao Lu
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Yun-Fei Wang
- Department of Cardiology, The 901st Hospital of Joint Logistics Support Force of PLA, Hefei, Anhui 230031, P.R. China
| | - Xian-Ge Zhang
- Institute of Public Health and Nursing Research, Department of Healthcare Management, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
8
|
Kruglikov IL, Zhang Z, Scherer PE. Skin aging: Dermal adipocytes metabolically reprogram dermal fibroblasts. Bioessays 2022; 44:e2100207. [PMID: 34766637 PMCID: PMC8688300 DOI: 10.1002/bies.202100207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Emerging data connects the aging process in dermal fibroblasts with metabolic reprogramming, provided by enhanced fatty acid oxidation and reduced glycolysis. This switch may be caused by a significant expansion of the dermal white adipose tissue (dWAT) layer in aged, hair-covered skin. Dermal adipocytes cycle through de-differentiation and re-differentiation. As a result, there is a strongly enhanced release of free fatty acids into the extracellular space during the de-differentiation of dermal adipocytes in the catagen phase of the hair follicle cycle. Both caveolin-1 and adiponectin are critical factors influencing these processes. Controlling the expression levels of these two factors also offers the ability to manipulate the metabolic preferences of the different cell types within the microenvironment of the skin, including dermal fibroblasts. Differential expression of adiponectin and caveolin-1 in the various cell types may also be responsible for the cellular metabolic heterogeneity within the cells of the skin.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA,Corresponding author: Scherer, P.E.,
| |
Collapse
|
9
|
Kruglikov IL. Assessment of Mechanical Stress Induced by Radiofrequency Currents on Skin Interfaces. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6623757. [PMID: 34671678 PMCID: PMC8523224 DOI: 10.1155/2021/6623757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
The epidermal-dermal (ED) and dermal-subcutaneous (DS) junctions are the most prominent skin interfaces, which are known to be of primary importance in different dermatological and aesthetic conditions. These interfaces are strongly modified in aging skin, and their effective targeting can lead to improvement of skin appearance in aging and by cellulite. Application of radiofrequency (RF) currents to the skin can selectively produce mechanical stress on these interfaces. Here, we assess the stresses induced by RF currents of different frequencies on EDJ and DSJ and discuss possible applications of the interfacial therapy in aesthetic medicine.
Collapse
|
10
|
A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia? Biomedicines 2021; 9:biomedicines9050572. [PMID: 34069454 PMCID: PMC8159142 DOI: 10.3390/biomedicines9050572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Irreversible destruction of the hair follicle (HF) in primary cicatricial alopecia and its most common variant, frontal fibrosing alopecia (FFA), results from apoptosis and pathological epithelial-mesenchymal transition (EMT) of epithelial HF stem cells (eHFSCs), in conjunction with the collapse of bulge immune privilege (IP) and interferon-gamma-mediated chronic inflammation. The scaffolding protein caveolin-1 (Cav1) is a key component of specialized cell membrane microdomains (caveolae) that regulates multiple signaling events, and even though Cav1 is most prominently expressed in the bulge area of human scalp HFs, it has not been investigated in any cicatricial alopecia context. Interestingly, in mice, Cav1 is involved in the regulation of (1) key HF IP guardians (TGF-β and α-MSH signaling), (2) IP collapse inducers/markers (IFNγ, substance P and MICA), and (3) EMT. Therefore, we hypothesize that Cav1 may be an unrecognized, important player in the pathobiology of cicatricial alopecias, and particularly, in FFA, which is currently considered as the most common type of primary lymphocytic scarring alopecia in the world. We envision that localized therapeutic inhibition of Cav1 in management of FFA (by cholesterol depleting agents, i.e., cyclodextrins/statins), could inhibit and potentially reverse bulge IP collapse and pathological EMT. Moreover, manipulation of HF Cav1 expression/localization would not only be relevant for management of cicatricial alopecia, but FFA could also serve as a model disease for elucidating the role of Cav1 in other stem cell- and/or IP collapse-related pathologies.
Collapse
|
11
|
Kruglikov I. Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound. J Pain Res 2020; 13:2791-2798. [PMID: 33173328 PMCID: PMC7646452 DOI: 10.2147/jpr.s281468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through direct disturbance of the mechanical surface waves in axonal membrane or through shifting of the thermodynamic state of this membrane far from its phase transition point. Both effects can be effectively realized through application of the very high frequency ultrasound waves. Additional target for application of ultrasound in pain treatment is the caveolin-1, which is abundantly present in Schwann cells as well as in the non-axonal tissues. Both targets demonstrate frequency-dependent reactions, thus making a very high frequency ultrasound a promising treatment modality in pain treatment.
Collapse
Affiliation(s)
- Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| |
Collapse
|
12
|
Kruglikov IL, Joffin N, Scherer PE. The MMP14-caveolin axis and its potential relevance for lipoedema. Nat Rev Endocrinol 2020; 16:669-674. [PMID: 32792644 DOI: 10.1038/s41574-020-0395-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.
Collapse
Affiliation(s)
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|