1
|
Egorova AA, Zykova TE, Hertig CW, Hoffie I, Morozov SV, Chernyak EI, Rogachev AD, Korotkova AM, Vikhorev AV, Vasiliev GV, Shoeva OY, Kumlehn J, Gerasimova SV, Khlestkina EK. Accumulation of Anthocyanin in the Aleurone of Barley Grains by Targeted Restoration of the MYC2 Gene. Int J Mol Sci 2024; 25:12705. [PMID: 39684416 DOI: 10.3390/ijms252312705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins.
Collapse
Affiliation(s)
- Anastasiya A Egorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Tatyana E Zykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sergey V Morozov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Alexander V Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olesya Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| |
Collapse
|
2
|
Zhen XH, Pan RR, Lu XH, Ge YJ, Li RM, Liu J, Wang YJ, Yi KX, Li CX, Guo JC, Yao Y, Geng MT. An Anthocyanin-Based Visual Reporter System for Genetic Transformation and Genome Editing in Cassava. Int J Mol Sci 2024; 25:11808. [PMID: 39519359 PMCID: PMC11547100 DOI: 10.3390/ijms252111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cassava (Manihot esculenta Crantz) is a staple crop in tropical and subtropical regions, valued for its high starch content in roots. Effective genetic transformation and genome editing of cassava require efficient screening methods for transgenic and edited plants. In this study, a visual selection marker system using an R2R3-MYB transcription factor anthocyanin 1 gene (HbAN1, LOC110667474) from a rubber tree (Hevea brasiliensis Müll. Arg.) has been developed to facilitate the identification of transgenic cassava plants. Transgenic cassava lines expressing HbAN1 accumulated anthocyanins in their leaves, allowing for easy visual identification without the need for destructive assays or specialized equipment. Importantly, the accumulation of anthocyanins did not affect the regeneration or transformation efficiency of cassava. Additionally, the AR-CRISPR/Cas9-gRNA system with the HbAN1 gene as a marker produced MeCDD4 gene-edited cassava mutants with purple leaves, demonstrating successful editing. This anthocyanin-based visual reporter (AR) system will provide an effective tool for genetic transformation and genome editing in cassava.
Collapse
Affiliation(s)
- Xing-Hou Zhen
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.Z.); (X.-H.L.); (C.-X.L.); (J.-C.G.)
| | - Ran-Ran Pan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.-R.P.); (R.-M.L.); (J.L.); (Y.-J.W.)
| | - Xiao-Hua Lu
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.Z.); (X.-H.L.); (C.-X.L.); (J.-C.G.)
| | - Yu-Jian Ge
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Rui-Mei Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.-R.P.); (R.-M.L.); (J.L.); (Y.-J.W.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.-R.P.); (R.-M.L.); (J.L.); (Y.-J.W.)
| | - Ya-Jie Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.-R.P.); (R.-M.L.); (J.L.); (Y.-J.W.)
| | - Ke-Xian Yi
- Environment and Plant Protection Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Chun-Xia Li
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.Z.); (X.-H.L.); (C.-X.L.); (J.-C.G.)
| | - Jian-Chun Guo
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.Z.); (X.-H.L.); (C.-X.L.); (J.-C.G.)
| | - Yuan Yao
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.-R.P.); (R.-M.L.); (J.L.); (Y.-J.W.)
| | - Meng-Ting Geng
- National Key Laboratory for Tropical Crop Breeding, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (X.-H.Z.); (X.-H.L.); (C.-X.L.); (J.-C.G.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
3
|
Li C, Gao Z, Hu W, Zhu X, Li Y, Li N, Ma C. Integration of comparative transcriptomics and WGCNA characterizes the regulation of anthocyanin biosynthesis in mung bean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1251464. [PMID: 37941672 PMCID: PMC10628539 DOI: 10.3389/fpls.2023.1251464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Mung bean is a dual-use crop widely cultivated in Southeast Asia as a food and medicine resource. The development of new functional mung bean varieties demands identifying new genes regulating anthocyanidin synthesis and investigating their molecular mechanism. In this study, we used high-throughput sequencing technology to generate transcriptome sequence of leaves, petioles, and hypocotyls for investigating the anthocyanins accumulation in common mung bean variety as well as anthocyanidin rich mung bean variety, and to elucidate their molecular mechanisms. 29 kinds of anthocyanin compounds were identified. Most of the anthocyanin components contents were significantly higher in ZL23 compare with AL12. Transcriptome analysis suggested that a total of 93 structural genes encoding the anthocyanin biosynthetic pathway and 273 regulatory genes encoding the ternary complex of MYB-bHLH-WD40 were identified, of which 26 and 78 were differentially expressed in the two varieties. Weighted gene co-expression network analysis revealed that VrMYB3 and VrMYB90 might have enhanced mung bean anthocyanin content by inducing the expression of structural genes such as PAL, 4CL, F3'5'H, LDOX, and F3'H, which was consistent with qRT-PCR results. These findings are envisaged to provide a reference for studying the molecular mechanism of anthocyanin accumulation in mung beans.
Collapse
Affiliation(s)
- Chunxia Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zexiang Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weili Hu
- Crop Breeding Research Center, Nanyang Academy of Agricultural Science, Nanyang, Henan, China
| | - Xu Zhu
- Crop Breeding Research Center, Nanyang Academy of Agricultural Science, Nanyang, Henan, China
| | - Youjun Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chao Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Dry-land Agricultural Engineering Technology Research Center in Henan, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
4
|
Bao X, Gan X, Fan G, Liu G, Ma X, Liu B, Zong Y. Transcriptome analysis identifies key genes involved in anthocyanin biosynthesis in black and purple fruits ( Lycium ruthenicum Murr. L). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Xuemei Bao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Qinghai Normal University, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- University of Chinese Academy of Science, Beijing, PR China
| | - Xiaolong Gan
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- University of Chinese Academy of Science, Beijing, PR China
| | - Guanghui Fan
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Guangrui Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Qinghai Normal University, Xining, Qinghai, PR China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Xiaolin Ma
- Afforestation Experiment Station in Arid Middle Hills of Qinghai Province, Qinghai Forestry and Grassland Bureau, Xining, Qinghai, PR China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- University of Chinese Academy of Science, Beijing, PR China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
| |
Collapse
|
5
|
Dwivedi SL, Mattoo AK, Garg M, Dutt S, Singh B, Ortiz R. Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.867897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition, unhealthy diets, and lifestyle changes are the major risk factors for overweight and obesity-linked chronic diseases in humans adversely impact achieving sustainable development goals. Colored grains are a source of anthocyanins, a group of flavonoids, that contribute positively to human health. This review focuses on genetic variation harnessed through breeding and biotechnology tools for developing anthocyanin-rich grain crops. Agronomic practices, genotype × environment interactions, different stresses, seed development and seed maturity are factors that impact the content and composition of anthocyanins. Significant progress has been made in characterizing genes associated with anthocyanin biosynthesis in cereal and other crops. Breeding has led to the development and release of grain anthocyanin-rich crop cultivars in Europe, America and in some countries in Asia. Notably, genetic engineering utilizing specific transcription factors and gene editing has led to the development of anthocyanin-rich genetic variants without any significant yield penalty. A variety of food products derived from colored grains or flours are now available in grocery stores and supermarkets worldwide. The public perception about anthocyanin-rich food is positive, but availability, affordability, and willingness to pay a higher price than before limit consumption. Together with other seed nutrition traits in breeding programs the inclusion of anthocyanins can ensure the development of cultivars that meet nutrition needs of humans, especially in the developing world.
Collapse
|
6
|
|
7
|
Detecting Crown Rot Disease in Wheat in Controlled Environment Conditions Using Digital Color Imaging and Machine Learning. AGRIENGINEERING 2022. [DOI: 10.3390/agriengineering4010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crown rot is one of the major stubble soil fungal diseases that bring significant yield loss to the cereal industry. The most effective crown rot management approach is removal of infected crop residue from fields and rotation of nonhost crops. However, disease screening is challenging as there are no clear visible symptoms on upper stems and leaves at early growth stages. The current manual screening method requires experts to observe the crown and roots of plants to detect disease, which is time-consuming, subjective, labor-intensive, and costly. As digital color imaging has the advantages of low cost and easy use, it has a high potential to be an economical solution for crown rot detection. In this research, a crown rot disease detection method was developed using a smartphone camera and machine learning technologies. Four common wheat varieties were grown in greenhouse conditions with a controlled environment, and all infected group plants were infected with crown rot without the presence of other plant diseases. We used a smartphone to take digital color images of the lower stems of plants. Using imaging processing techniques and a support vector machine algorithm, we successfully distinguished infected and healthy plants as early as 14 days after disease infection. The results provide a vital first step toward developing a digital color imaging phenotyping platform for crown rot detection to enable the management of crown rot disease effectively. As an easy-access phenotyping method, this method could provide support for researchers to develop an efficiency and economic disease screening method in field conditions.
Collapse
|
8
|
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:887-900. [PMID: 35029408 DOI: 10.1021/acs.jafc.1c05029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colored wheat has always been a popular research area because of its high performance in the field and significant medical uses. Progress has been made mapping the genes of purple or blue grains; however, the reason why different grain colors form in wheat is not well understood. We created wheat lines with different grain colors (purple and blue) using the white grain cultivar Xiaoyan22 and located the candidate region related to the purple and blue grains in chromosome 2A, 2B, and 4D, 2A, respectively, by the bulked segregant RNA-seq. The transcriptomic and metabolomic analyses of the three grains at different developmental stages indicated that the upregulation of flavonoid 3'-hydroxylase/flavonoid 3',5'hydroxylase 2 and TaMYC1/TaMYC4 was important for the formation of purple/blue grains. The blue TaMYC4 had 16 nonsynonymous single nucleotide variants verified by Sanger sequencing and possessed a different splicing mode in the bHLH_MYC_N domain compared with the reference database. Targeted high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis of anthocyanins found that the purple and blue grains contained more pelargonidin, cyanidin, and delphinidin, respectively. This study provides a comprehensive understanding of the different color formations of wheat grains and useful information about genetic improvements in wheat and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuqiu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Identification, Characterization and Expression Analysis of Anthocyanin Biosynthesis-related bHLH Genes in Blueberry ( Vaccinium corymbosum L.). Int J Mol Sci 2021; 22:ijms222413274. [PMID: 34948071 PMCID: PMC8708680 DOI: 10.3390/ijms222413274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Basic helix-loop-helix proteins (bHLHs) play very important roles in the anthocyanin biosynthesis of many plant species. However, the reports on blueberry anthocyanin biosynthesis-related bHLHs were very limited. In this study, six anthocyanin biosynthesis-related bHLHs were identified from blueberry genome data through homologous protein sequence alignment. Among these blueberry bHLHs, VcAN1, VcbHLH42-1, VcbHLH42-2 and VcbHLH42-3 were clustered into one group, while VcbHLH1-1 and VcbHLH1-2 were clustered into the other group. All these bHLHs were of the bHLH-MYC_N domain, had DNA binding sites and reported conserved amino acids in the bHLH domain, indicating that they were all G-box binding proteins. Protein subcellular location prediction result revealed that all these bHLHs were nucleus-located. Gene structure analysis showed that VcAN1 gDNA contained eight introns, while all the others contained seven introns. Many light-, phytohormone-, stress- and plant growth and development-related cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, but the types and numbers of cis-elements and TFBSs varied greatly between the two bHLH groups. Quantitative real-time PCR results showed that VcAN1 expressed highly in old leaf, stem and blue fruit, and its expression increased as the blueberry fruit ripened. Its expression in purple podetium and old leaf was respectively significantly higher than in green podetium and young leaf, indicating that VcAN1 plays roles in anthocyanin biosynthesis regulation not only in fruit but also in podetium and leaf. VcbHLH1-1 expressed the highest in young leaf and stem, and the lowest in green fruit. The expression of VcbHLH1-1 also increased as the fruit ripened, and its expression in blue fruit was significantly higher than in green fruit. VcbHLH1-2 showed high expression in stem but low expression in fruit, especially in red fruit. Our study indicated that the anthocyanin biosynthesis regulatory functions of these bHLHs showed certain spatiotemporal specificity. Additionally, VcAN1 might be a key gene controlling the anthocyanin biosynthesis in blueberry, whose function is worth exploring further for its potential applications in plant high anthocyanin breeding.
Collapse
|
10
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|