1
|
Bernardo AM, Marcotte M, Wong K, Sharmin D, Pandey KP, Cook JM, Sibille EL, Prevot TD. Procognitive and neurotrophic benefits of α5-GABA-A receptor positive allosteric modulation in a β-amyloid deposition mouse model of Alzheimer's disease pathology. Neurobiol Aging 2024; 147:49-59. [PMID: 39689527 DOI: 10.1016/j.neurobiolaging.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Reduced somatostatin (SST) and SST-expressing GABAergic neurons are well-replicated findings in Alzheimer's disease (AD) and are associated with cognitive deficits. SST cells inhibit pyramidal cell dendrites through α5-GABA-A receptors (α5-GABAA-R). α5-GABAAR positive allosteric modulation (α5-PAM) has procognitive and neurotrophic effects in stress and aging models. We tested whether α5-PAM (GL-II-73) could prevent cognitive deficits and neuronal spine loss in early stages, and reverse them in late stages of β-amyloid deposition in the 5xFAD model (N = 48/study; 50 % female). Acute administration of GL-II-73 prevented spatial working memory deficits in 5xFAD mice at 2 months of age, while chronic administration reversed the deficits at 5 months of age. Chronic GL-II-73 treatment prevented 5xFAD-induced loss of spine density, spine count and dendritic length at both time points, despite β-amyloid accumulation. These results demonstrate procognitive and neurotrophic effects of GL-II-73 in early and late stages of Alzheimer-related β-amyloid deposition. This suggests α5-PAM as a novel β-amyloid-independent symptomatic therapeutic approach.
Collapse
Affiliation(s)
- Ashley M Bernardo
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Michael Marcotte
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Kayla Wong
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N Cramer Street, WI 53211, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 college street, Toronto, ON M5T 1R8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Cir Room 4207, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
3
|
Mao LM, Thallapureddy K, Wang JQ. Effects of propofol on presynaptic synapsin phosphorylation in the mouse brain in vivo. Brain Res 2024; 1823:148671. [PMID: 37952872 PMCID: PMC10806815 DOI: 10.1016/j.brainres.2023.148671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The commonly used general anesthetic propofol can enhance the γ-aminobutyric acid-mediated inhibitory synaptic transmission and depress the glutamatergic excitatory synaptic transmission to achieve general anesthesia and other outcomes. In addition to the actions at postsynaptic sites, the modulation of presynaptic activity by propofol is thought to contribute to neurophysiological effects of the anesthetic, although potential targets of propofol within presynaptic nerve terminals are incompletely studied at present. In this study, we explored the possible linkage of propofol to synapsins, a family of neuron-specific phosphoproteins which are the most abundant proteins on presynaptic vesicles, in the adult mouse brain in vivo. We found that an intraperitoneal injection of propofol at a dose that caused loss of righting reflex increased basal levels of synapsin phosphorylation at the major representative phosphorylation sites (serine 9, serine 62/67, and serine 603) in the prefrontal cortex (PFC) of male and female mice. Propofol also elevated synapsin phosphorylation at these sites in the striatum and S9 and S62/67 phosphorylation in the hippocampus, while propofol had no effect on tyrosine hydroxylase phosphorylation in striatal nerve terminals. Total synapsin protein expression in the PFC, hippocampus, and striatum was not altered by propofol. These results reveal that synapsin could be a novel substrate of propofol in the presynaptic neurotransmitter release machinery. Propofol possesses the ability to upregulate synapsin phosphorylation in broad mouse brain regions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Khyathi Thallapureddy
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
4
|
Bampali K, Koniuszewski F, Vogel FD, Fabjan J, Andronis C, Lekka E, Virvillis V, Seidel T, Delaunois A, Royer L, Rolf MG, Giuliano C, Traebert M, Roussignol G, Fric-Bordat M, Mazelin-Winum L, Bryant SD, Langer T, Ernst M. GABA A receptor-mediated seizure liabilities: a mixed-methods screening approach. Cell Biol Toxicol 2023; 39:2793-2819. [PMID: 37093397 PMCID: PMC10693519 DOI: 10.1007/s10565-023-09803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.
Collapse
Affiliation(s)
- Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Annie Delaunois
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Leandro Royer
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Michael G Rolf
- R&D Biopharmaceuticals, Astra Zeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Chiara Giuliano
- R&D Biopharmaceuticals, Astra Zeneca, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Martin Traebert
- Novartis Institutes for Biomedical Research, Fabrikstrasse 2, CH-4056, Basel, Switzerland
| | | | | | | | - Sharon D Bryant
- Inte:Ligand GmbH, Mariahilferstrasse 74B/11, 1070, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. Front Neurol 2023; 14:1243575. [PMID: 38099067 PMCID: PMC10719949 DOI: 10.3389/fneur.2023.1243575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in pathological delta (δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles, and their nesting) in post-stroke patients vs. healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles, and nested spindles in affected hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study indicate that considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
- Benjamin K. Simpson
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rohit Rangwani
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aamir Abbasi
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeffrey M. Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chrystal M. Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Simpson BK, Rangwani R, Abbasi A, Chung JM, Reed CM, Gulati T. Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289359. [PMID: 37205348 PMCID: PMC10187327 DOI: 10.1101/2023.05.01.23289359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling sleep oscillations post-stroke in the human brain. Recent rodent work showed that resurgence of physiologic spindles coupled to sleep slow oscillations(SOs) and concomitant decrease in pathological delta(δ) waves is associated with sustained motor performance gains during stroke recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM) sleep-oscillations (namely SOs, δ-waves, spindles and their nesting) in post-stroke patients versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data in hospitalized stroke-patients (n=5) and healthy subjects (n=3) from an open-sourced dataset. We used a laterality index to evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had pronounced asymmetry in the oscillations, with a predominance of SOs, δ-waves, spindles and nested spindles in one hemisphere, when compared to the healthy subjects. Recent preclinical work classified SO-nested spindles as restorative post-stroke and δ-wave-nested spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ-wave-nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which included random effects of concurrent pharmacologic drugs), we found large and medium effect size for δ-wave nested spindle and SO-nested spindle, respectively. Our results indicate considering laterality index of NREM oscillations might be a useful metric for assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when targeting sleep modulation for neurorehabilitation post-stroke.
Collapse
Affiliation(s)
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tanuj Gulati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of Engineering, University of California - Los Angeles, Los Angeles, CA
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Zhou Q, Han Y, Chen J. Meta-Analysis of Anesthetic Efficacy and Safety of Propofol in Craniotomy Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6318051. [PMID: 36051921 PMCID: PMC9410844 DOI: 10.1155/2022/6318051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The anesthetic effect and safety of propofol in craniotomy patients by meta-analysis is investigated. Relevant studies consistent with the anesthetic effect and safety of propofol in craniotomy patients are searched and screened from domestic and foreign literature databases such as Wanfang Medical Center, CNKI, VIP, and PubMed, and meta-analysis is performed by RevMan 5.2 software. Experimental results show that the recovery time, intracranial pressure, cerebral edema, partial cerebral oxygen pressure, glutamate, and MDA in the propofol group are better than those in the control group (P < 0.05), and the incidence of superoxide dismutase, TNF-α, and adr in the propofol group is better than that in the control group (P > 0.05). Intravenous anesthesia with propofol in patients with craniotomy has the advantage of rapid recovery, and this program can improve intracranial pressure, brain edema, and brain oxygen partial pressure and help to improve oxidative stress and inflammatory reaction.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Ya'nan Han
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jun Chen
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| |
Collapse
|
8
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Physiological Role of ATPase for GABA A Receptor Resensitization. Int J Mol Sci 2022; 23:ijms23105320. [PMID: 35628132 PMCID: PMC9141714 DOI: 10.3390/ijms23105320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) mediate primarily inhibitory synaptic transmission in the central nervous system. Following fast-paced activation, which provides the selective flow of mainly chloride (Cl−) and less bicarbonate (HCO3−) ions via the pore, these receptors undergo desensitization that is paradoxically prevented by the process of their recovery, referred to as resensitization. To clarify the mechanism of resensitization, we used the cortical synaptoneurosomes from the rat brain and HEK 293FT cells. Here, we describe the effect of γ-phosphate analogues (γPAs) that mimic various states of ATP hydrolysis on GABAAR-mediated Cl− and HCO3− fluxes in response to the first and repeated application of the agonist. We found that depending on the presence of bicarbonate, opened and desensitized states of the wild or chimeric GABAARs had different sensitivities to γPAs. This study presents the evidence that recovery of neuronal Cl− and HCO3− concentrations after desensitization is accompanied by a change in the intracellular ATP concentration via ATPase performance. The transition between the desensitization and resensitization states was linked to changes in both conformation and phosphorylation. In addition, the chimeric β3 isoform did not exhibit the desensitization of the GABAAR-mediated Cl− influx but only the resensitization. These observations lend a new physiological significance to the β3 subunit in the manifestation of GABAAR resensitization.
Collapse
Affiliation(s)
- Sergey A. Menzikov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Correspondence: ; Tel.: +7-(499)-151-1756; Fax: +7-(495)-601-2366
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
| | - Aleksey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Russian Medical Academy of Postdoctoral Education, Federal State Budgetary Educational Institution of Further Professional Education of the Ministry of Healthcare of the Russian Federation, 2/1, Barrykadnaya St., 125993 Moscow, Russia
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
| | - Aslan A. Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, 8, Baltiyskaya St., 125315 Moscow, Russia; (D.M.Z.); (A.A.M.); (S.G.M.); (A.A.K.)
- Russian Medical Academy of Postdoctoral Education, Federal State Budgetary Educational Institution of Further Professional Education of the Ministry of Healthcare of the Russian Federation, 2/1, Barrykadnaya St., 125993 Moscow, Russia
| |
Collapse
|
9
|
Sikstus S, Benkherouf AY, Soini SL, Uusi-Oukari M. The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity. Neurochem Res 2022; 47:667-678. [PMID: 34727270 PMCID: PMC8847198 DOI: 10.1007/s11064-021-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 10/26/2022]
Abstract
The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses.
Collapse
Affiliation(s)
- Sylvia Sikstus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
| |
Collapse
|
10
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Li S, Yang H, Zhao M, Gong L, Wang Y, Lv Z, Quan Y, Wang Z. Demethylation of HACE1 gene promoter by propofol promotes autophagy of human A549 cells. Oncol Lett 2020; 20:280. [PMID: 33014158 PMCID: PMC7520799 DOI: 10.3892/ol.2020.12143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Propofol (2,6-diisopropylphenol) is one of the most commonly used intravenous anesthetics and possesses a number of non-anesthetic effects, including antitumor function. The aim of the present study was to elucidate the antitumor molecular mechanism of propofol on A549 and H1299 cells. A549 and H1299 cells were treated in the presence or absence of different concentrations (0, 60 or 120 µmol) of propofol for different durations (0, 24, 48 or 72 h), and proliferation was detected by MTT and colony formation assays; the protein levels of optineurin (OPTN) ubiquitination, HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), methyl-CpG binding domain protein 3 (MBD3) and Microtubule-associated protein 1A/1B-light chain 3 were detected by immunoblotting or quantitative (q)PCR; the methylation state of the HACE1 gene promoter was detected by bisulfite DNA sequencing; and binding of MBD3 on HACE1 gene promoter was detected by chromatin immunoprecipitation-qPCR. Propofol inhibited proliferation of A549 and H1299 cells and promoted HACE1-OPTN axis-mediated selective autophagy activity by increasing the protein expression levels of HACE1 via demethylating its promoter region. Furthermore, propofol promoted expression levels of MBD3 and binding to the -1,000 to -1 bp (transcription start site) region of HACE1 gene promoter. MBD3-knockdown experiments indicated that propofol inhibited proliferation of A549 cells in a MBD3-dependent manner. Thus, the findings of the present study provided a potential antitumor molecular mechanism mediated by propofol.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Hui Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Min Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Linli Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Yahong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhiyong Lv
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Yuhang Quan
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhonghui Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| |
Collapse
|