1
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Panigrahi M, Rajawat D, Nayak SS, Jain K, Vaidhya A, Prakash R, Sharma A, Parida S, Bhushan B, Dutt T. Genomic insights into key genes and QTLs involved in cattle reproduction. Gene 2024; 917:148465. [PMID: 38621496 DOI: 10.1016/j.gene.2024.148465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
From an economic standpoint, reproductive characteristics are fundamental for sustainable production, particularly for monotocous livestock like cattle. A longer inter-calving interval is indicative of low reproductive capacity. This issue changes the dynamics of current and future lactations since it necessitates more inseminations, veterinary care, and hormone interventions. Various reproductive phenotypes, including ovulation, mating, fertility, pregnancy, embryonic growth, and calving-related traits, are observed in dairy cattle, and these traits have been associated with several QTLs. Calving ease, age at puberty, scrotal circumference, and inseminations per conception have been associated with 4437, 10623, 10498, and 2476 Quantitative Trait Loci (QTLs), respectively. This data offers valuable insights into enhancing and comprehending reproductive traits in livestock breeding. Studying QTLs associated with reproductive traits has far-reaching implications across various fields, from agriculture and animal husbandry to human health, evolutionary biology, and conservation. It provides the foundation for informed breeding practices, advances in biotechnology, and a deeper understanding of the genetic underpinnings of reproduction.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ravi Prakash
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
3
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
4
|
Zhao F, Xie R, Fang L, Xiang R, Yuan Z, Liu Y, Wang L. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol Appl 2024; 17:e13697. [PMID: 38911262 PMCID: PMC11192971 DOI: 10.1111/eva.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.
Collapse
Affiliation(s)
- Fuping Zhao
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Rui Xie
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhusDenmark
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lixian Wang
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Narayanasamy R, Usharani D, Rajasekharan R. Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae. Chem Phys Lipids 2024; 258:105353. [PMID: 37944658 DOI: 10.1016/j.chemphyslip.2023.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in Saccharomyces cerevisiae to determine its physiological relevance in lipid metabolism. Through in vivo [14C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC-MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using 3tglsΔ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.
Collapse
Affiliation(s)
- Raja Narayanasamy
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ram Rajasekharan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India.
| |
Collapse
|
6
|
Correnti S, Preianò M, Fregola A, Gamboni F, Stephenson D, Savino R, D'Alessandro A, Terracciano R. Seminal plasma untargeted metabolomic and lipidomic profiling for the identification of a novel panel of biomarkers and therapeutic targets related to male infertility. Front Pharmacol 2023; 14:1275832. [PMID: 37829298 PMCID: PMC10565040 DOI: 10.3389/fphar.2023.1275832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Male infertility occurs approximately in about 50% of all infertility cases and represents a serious concern worldwide. Traditional semen analysis alone is insufficient to diagnose male infertility. Over the past two decades, advances in omics technologies have led to the widespread application of metabolomics profiling as a valuable diagnostic tool for various diseases and disorders. Seminal plasma represents a rich and easily accessible source of metabolites surrounding spermatozoa, a milieu that provides several indispensable nutrients to sustain sperm motility and fertilization. Changes of metabolic profiles in seminal plasma reflect male reproductive tract disorders. Here, we performed seminal plasma metabolomics and lipidomics profiling to identify a new pattern of biomarkers of male infertility. Seminal plasma samples from unfertile subjects (n = 31) and fertile controls (n = 19) were analyzed using an untargeted metabolomics/lipidomics integrated approach, based on Ultra-High-Pressure Liquid Chromatography-tandem Mass Spectrometry. Partial Least Squares-Discriminant Analysis showed a distinct separation between healthy fertile men and infertile subjects. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, phosphatidylethanolamine (PE) (18:1; 18:1) resulted with the highest score. In total, 40 molecular species showed statistically significant variations between fertile and infertile men. Heat-map and volcano plot analysis indicated that acylcarnitines, phosphatidylserine (PS) (40:2) and lactate were decreased, while PE (18:1; 18:1), Phosphatidic acid (PA) (O-19:2; 18:1), Lysophosphatidylethanolamine (LPE) (O-16:1) and Phosphatidylcholine (PC) (O-16:2; 18:1)-CH3 were increased in the infertile group. The present study is the first one to analyze the metabolomics/lipidomics dysregulation in seminal plasma between fertile and infertile individuals regardless of sub-infertility condition. Association of several metabolites/lipids dysregulation with male infertility reinforced data of previous studies performed with different approaches. In particular, we confirmed significantly decreased levels of PS and carnitines in infertile patients as well as the positive correlation with sperm motility and morphology. If validated on a larger prospective cohort, the metabolite biomarkers of infertility in seminal plasma we identified in the present study might inform novel strategies for diagnosis and interventions to overcome male infertility.
Collapse
Affiliation(s)
- Serena Correnti
- Department of Health Sciences, Magna Græcia University, Catanzaro, Italy
| | | | | | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
7
|
Li Z, Zhang K, Zhou Y, Zhao J, Wang J, Lu W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023; 28:4940. [PMID: 37446601 PMCID: PMC10343719 DOI: 10.3390/molecules28134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuming Zhou
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Pausch H, Mapel XM. Review: Genetic mutations affecting bull fertility. Animal 2023; 17 Suppl 1:100742. [PMID: 37567657 DOI: 10.1016/j.animal.2023.100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cattle are a well-suited "model organism" to study the genetic underpinnings of variation in male reproductive performance. The adoption of artificial insemination and genomic prediction in many cattle breeds provide access to microarray-derived genotypes and repeated measurements for semen quality and insemination success in several thousand bulls. Similar-sized mapping cohorts with phenotypes for male fertility are not available for most other species precluding powerful association testing. The repeated measurements of the artificial insemination bulls' semen quality enable the differentiation between transient and biologically relevant trait fluctuations, and thus, are an ideal source of phenotypes for variance components estimation and genome-wide association testing. Genome-wide case-control association testing involving bulls with either aberrant sperm quality or low insemination success revealed several causal recessive loss-of-function alleles underpinning monogenic reproductive disorders. These variants are routinely monitored with customised genotyping arrays in the male selection candidates to avoid the use of subfertile or infertile bulls for artificial insemination and natural service. Genome-wide association studies with quantitative measurements of semen quality and insemination success revealed quantitative trait loci for male fertility, but the underlying causal variants remain largely unknown. Moreover, these loci explain only a small part of the heritability of male fertility. Integrating genome-wide association studies with gene expression and other omics data from male reproductive tissues is required for the fine-mapping of candidate causal variants underlying variation in male reproductive performance in cattle.
Collapse
Affiliation(s)
- Hubert Pausch
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | - Xena Marie Mapel
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Vaquer CC, Suhaiman L, Pavarotti MA, Arias RJ, Pacheco Guiñazú AB, De Blas GA, Belmonte SA. The pair ceramide 1-phosphate/ceramide kinase regulates intracellular calcium and progesterone-induced human sperm acrosomal exocytosis. Front Cell Dev Biol 2023; 11:1148831. [PMID: 37065849 PMCID: PMC10102357 DOI: 10.3389/fcell.2023.1148831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Before fertilization, spermatozoa must undergo calcium-regulated acrosome exocytosis in response to physiological stimuli such as progesterone and zona pellucida. Our laboratory has elucidated the signaling cascades accomplished by different sphingolipids during human sperm acrosomal exocytosis. Recently, we established that ceramide increases intracellular calcium by activating various channels and stimulating the acrosome reaction. However, whether ceramide induces exocytosis on its own, activation of the ceramide kinase/ceramide 1-phosphate (CERK/C1P) pathway or both is still an unsolved issue. Here, we demonstrate that C1P addition induces exocytosis in intact, capacitated human sperm. Real-time imaging in single-cell and calcium measurements in sperm population showed that C1P needs extracellular calcium to induce [Ca2+]i increase. The sphingolipid triggered the cation influx through voltage-operated calcium (VOC) and store-operated calcium (SOC) channels. However, it requires calcium efflux from internal stores through inositol 3-phosphate receptors (IP3R) and ryanodine receptors (RyR) to achieve calcium rise and the acrosome reaction. We report the presence of the CERK in human spermatozoa, the enzyme that catalyzes C1P synthesis. Furthermore, CERK exhibited calcium-stimulated enzymatic activity during the acrosome reaction. Exocytosis assays using a CERK inhibitor demonstrated that ceramide induces acrosomal exocytosis, mainly due to C1P synthesis. Strikingly, progesterone required CERK activity to induce intracellular calcium increase and acrosome exocytosis. This is the first report, implicating the bioactive sphingolipid C1P in the physiological progesterone pathway leading to the sperm acrosome reaction.
Collapse
Affiliation(s)
- Cintia C. Vaquer
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laila Suhaiman
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martín A. Pavarotti
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodolfo J. Arias
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anahí B. Pacheco Guiñazú
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Gerardo A. De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Silvia A. Belmonte, ,
| |
Collapse
|
10
|
Molecular insights on PS-PLA 1 lipase activity of human ABHD16B. Biophys Chem 2023; 296:106976. [PMID: 36841071 DOI: 10.1016/j.bpc.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The human alpha beta hydrolase domain (ABHD) proteins are ubiquitous and regulate the cellular lipids' anabolic and catabolic processes. The structural aspects for specific biochemical function of many ABHD proteins related to physiological disorders and its link to pathological conditions remain unknown. Here putative human ABHD16B protein was overexpressed in Saccharomyces cerevisiae for its biological activity. In-vitro enzymatic assay of the recombinant ABHD16B protein with fluorescently tagged glycerophospholipids revealed that the PLA1 activity is observed with phosphatidylserine (PS). In addition, it efficiently hydrolyzed monoacylglycerol over triacylglycerols. Further, molecular dynamic simulations and per residue binding free energy decomposition analysis revealed that the origin of PS-specific PLA1 activity of ABHD16B is due to the electrostatic interaction of the PS head group with K8, R319, and E178, which led to having the hydrogen bond interaction of sn-1 acyl chain ester to the catalytic site residues. Site-directed mutagenesis of the 245GXSXG249 motif of ABHD16B reduced the maximal lipase activity of PS and MAG. In summary, these results revealed that ABHD16B plays a vital role in PS selectivity that in turn, controls the specific subcellular pools of 2-LPS metabolism in the tissues at low pH.
Collapse
|
11
|
α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. Int J Mol Sci 2022; 23:ijms23147777. [PMID: 35887122 PMCID: PMC9316559 DOI: 10.3390/ijms23147777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the α/β-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.
Collapse
|
12
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
13
|
Liu J, Shi L, Li Y, Chen L, Garrick D, Wang L, Zhao F. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. J Anim Sci Biotechnol 2021; 12:95. [PMID: 34348773 PMCID: PMC8340518 DOI: 10.1186/s40104-021-00608-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A run of homozygosity (ROH) is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents. Genomic inbreeding can be quantified based on ROH. Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands. We carried out ROH analyses in five Chinese indigenous sheep breeds; Altay sheep (n = 50 individuals), Large-tailed Han sheep (n = 50), Hulun Buir sheep (n = 150), Short-tailed grassland sheep (n = 150), and Tibetan sheep (n = 50), using genotypes from an Ovine Infinium HD SNP BeadChip. RESULTS A total of 18,288 ROH were identified. The average number of ROH per individual across the five sheep breeds ranged from 39 (Hulun Buir sheep) to 78 (Large-tailed Han sheep) and the average length of ROH ranged from 0.929 Mb (Hulun Buir sheep) to 2.544 Mb (Large-tailed Han sheep). The effective population size (Ne) of Altay sheep, Large-tailed Han sheep, Hulun Buir sheep, Short-tailed grassland sheep and Tibetan sheep were estimated to be 81, 78, 253, 238 and 70 five generations ago. The highest ROH-based inbreeding estimate (FROH) was 0.0808 in Large-tailed Han sheep, whereas the lowest FROH was 0.0148 in Hulun Buir sheep. Furthermore, the highest proportion of long ROH fragments (> 5 Mb) was observed in the Large-tailed Han sheep breed which indicated recent inbreeding. In total, 49 ROH islands (the top 0.1% of the SNPs most commonly observed in ROH) were identified in the five sheep breeds. Three ROH islands were common to all the five sheep breeds, and were located on OAR2: 12.2-12.3 Mb, OAR12: 78.4-79.1 Mb and OAR13: 53.0-53.6 Mb. Three breed-specific ROH islands were observed in Altay sheep (OAR15: 3.4-3.8 Mb), Large-tailed Han sheep (ORA17: 53.5-53.8 Mb) and Tibetan sheep (ORA5:19.8-20.2 Mb). Collectively, the ROH islands harbored 78 unique genes, including 19 genes that have been documented as having associations with tail types, adaptation, growth, body size, reproduction or immune response. CONCLUSION Different ROH patterns were observed in five Chinese indigenous sheep breeds, which reflected their different population histories. Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding. Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds. Our findings contribute to the understanding of genetic diversity and population demography, and help design and implement breeding and conservation strategies for Chinese sheep.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Chen
- The Affiliated High School of Peking University, Beijing, 100192 China
| | - Dorian Garrick
- A.L. Rae Centre of Genetics and Breeding, Massey University, Hamilton, 3240 New Zealand
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|