1
|
Fang H, Guo C, Mei X, Hao M, Zhang J, Luo L, Liu H, Liu Y, Huang H, He X, Zhu Y, Yang M, Zhu S. Light stress elicits soilborne disease suppression mediated by root-secreted flavonoids in Panax notoginseng. HORTICULTURE RESEARCH 2024; 11:uhae213. [PMID: 39386000 PMCID: PMC11462611 DOI: 10.1093/hr/uhae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/21/2024] [Indexed: 10/12/2024]
Abstract
Developing disease-suppressive soils is an effective approach for managing soilborne diseases, which can be achieved through crop metabolism and root secretion modification to recruit beneficial soil microbiota. Many factors, such as light, can elicit and modify plant metabolomic activities, resulting in disease suppression. To investigate the impact of light, Panax notoginseng was planted in a greenhouse and forest, conditioned with three levels of light intensities, including the optimal (15% light transmittance of full light), suboptimal low (5% light transmittance of full light) and suboptimal high (30% light transmittance of full light) intensities. We assessed the rhizosphere microbiota of P. notoginseng and root rot disease caused by soilborne pathogen Ilyonectria destructans, and elucidated the mechanism. Results showed that suboptimal light conditions alleviated root rot disease of P. notoginseng by enriching beneficial microbiota in the rhizosphere. Both low and high light stresses enhanced the secondary metabolism profile in favor of plant defense, particularly the flavonoid pathway. Notably, high light stress demonstrated a robust ability to promote flavonoid metabolism and secretion, resulting in the enrichment of more beneficial microorganisms that suppressed the soilborne pathogen I. destructans. These findings highlight the potential for adjusting canopy light intensities to improve soil health and promote sustainable agriculture.
Collapse
Affiliation(s)
- Haiyan Fang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Minwen Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yuanjiang County Tobacco Monopoly Bureau, Yuxi, 653399, China
| | - Jiayin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Lifen Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
2
|
Mourad AMI, Börner A, Esmail SM. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. PHYTOPATHOLOGY 2024; 114:2221-2234. [PMID: 38970807 DOI: 10.1094/phyto-05-24-0157-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.
Collapse
Affiliation(s)
- Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
| | - Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, 12619 Giza, Egypt
| |
Collapse
|
3
|
Rahmadi HY, Syukur M, Widodo, Suwarno WB, Wening S, Simamora AN, Nugroho S. 1H NMR analysis of metabolites from leaf tissue of resistant and susceptible oil palm breeding materials against Ganoderma boninense. Metabolomics 2024; 20:89. [PMID: 39095669 DOI: 10.1007/s11306-024-02160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.
Collapse
Affiliation(s)
- Hernawan Yuli Rahmadi
- Agronomy and Horticulture Department, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia.
- Plant Breeding Department, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No.51, Medan, North Sumatera, 20158, Indonesia.
| | - Muhamad Syukur
- Agronomy and Horticulture Department, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia
| | - Widodo
- Plant Protection Department, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia
| | - Willy Bayuardi Suwarno
- Agronomy and Horticulture Department, IPB University, Jl. Raya Dramaga, Bogor, West Java, 16680, Indonesia
| | - Sri Wening
- Plant Breeding Department, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No.51, Medan, North Sumatera, 20158, Indonesia
| | - Arfan Nazhri Simamora
- Plant Breeding Department, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No.51, Medan, North Sumatera, 20158, Indonesia
| | - Syarul Nugroho
- Plant Breeding Department, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No.51, Medan, North Sumatera, 20158, Indonesia
| |
Collapse
|
4
|
Sallam A, Dawood MFA, Jarquín D, Mohamed EA, Hussein MY, Börner A, Ahmed AAM. Genome-wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seedlings. THE PLANT GENOME 2024; 17:e20444. [PMID: 38476036 DOI: 10.1002/tpg2.20444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Unlike other growth stages of wheat, very few studies on drought tolerance have been done at the seedling stage, and this is due to the complexity and sensitivity of this stage to drought stress resulting from climate change. As a result, the drought tolerance of wheat seedlings is poorly understood and very few genes associated with drought tolerance at this stage were identified. To address this challenge, a set of 172 spring wheat genotypes representing 20 different countries was evaluated under drought stress at the seedling stage. Drought stress was applied on all tested genotypes by water withholding for 13 days. Two types of traits, namely morphological and physiological traits were scored on the leaves of all tested genotypes. Genome-wide association study (GWAS) is one of the effective genetic analysis methods that was used to identify target single nucleotide polymorphism (SNP) markers and candidate genes for later use in marker-assisted selection. The tested plant materials were genotyped using 25k Infinium iSelect array (25K) (herein after it will be identified as 25K) (for 172 genotypes) and genotyping-by-sequencing (GBS) (for 103 genotypes), respectively. The results of genotyping revealed 21,093 25K and 11,362 GBS-SNPs, which were used to perform GWAS analysis for all scored traits. The results of GWAS revealed that 131 and 55 significant SNPs were controlling morphological and physiological traits, respectively. Moreover, a total of eight and seven SNP markers were found to be associated with more than one morphological and physiological trait under drought stress, respectively. Remarkably, 10 significant SNPs found in this study were previously reported for their association with drought tolerance in wheat. Out of the 10 validated SNP markers, four SNPs were associated with drought at the seedling stage, while the remaining six SNPs were associated with drought stress at the reproductive stage. Moreover, the results of gene enrichment revealed 18 and six pathways as highly significant biological and molecular pathways, respectively. The selection based on drought-tolerant alleles revealed 15 genotypes with the highest number of different drought-tolerant alleles. These genotypes can be used as candidate parents in future breeding programs to produce highly drought-tolerant genotypes with high genetic diversity. Our findings in this study provide novel markers and useful information on the genetic basis of drought tolerance at early growth stages.
Collapse
Affiliation(s)
- Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mona F A Dawood
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Elsayed A Mohamed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohamed Y Hussein
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Germany
| | - Asmaa A M Ahmed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
5
|
Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci 2024; 47:e2300669. [PMID: 38651549 DOI: 10.1002/jssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dianbing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Research Center of Biomacromolecules, China Academy of Sciences, National Laboratory of Biomacromolecules, Beijing, China
| | - Chengyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
7
|
Wu X, Sun Z, Qi F, Liu H, Zhao M, Wang J, Wang M, Zhao R, Wu Y, Dong W, Zheng Z, Zhang X. Cytological and transcriptomic analysis to unveil the mechanism of web blotch resistance in Peanut. BMC PLANT BIOLOGY 2023; 23:518. [PMID: 37884908 PMCID: PMC10601179 DOI: 10.1186/s12870-023-04545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.
Collapse
Affiliation(s)
- Xiaohui Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Ziqi Sun
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Feiyan Qi
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hua Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Mingbo Zhao
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Juan Wang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Mengmeng Wang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Ruifang Zhao
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yue Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenzhao Dong
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Zheng Zheng
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Xinyou Zhang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
8
|
Derevyanchuk M, Kretynin S, Bukhonska Y, Pokotylo I, Khripach V, Ruelland E, Filepova R, Dobrev PI, Martinec J, Kravets V. Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3586. [PMID: 37896049 PMCID: PMC10609748 DOI: 10.3390/plants12203586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.
Collapse
Affiliation(s)
- Michael Derevyanchuk
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Serhii Kretynin
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Yaroslava Bukhonska
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Igor Pokotylo
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Vladimir Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Eric Ruelland
- Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, 60203 Compiègne, France;
| | - Roberta Filepova
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, The Czech Academy of Sciences, 16502 Prague, Czech Republic
| | - Volodymyr Kravets
- VP Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| |
Collapse
|
9
|
Mourad AM, Hamdy RM, Esmail SM. Novel genomic regions on chromosome 5B controlling wheat powdery mildew seedling resistance under Egyptian conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1160657. [PMID: 37235018 PMCID: PMC10208068 DOI: 10.3389/fpls.2023.1160657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Wheat powdery mildew (PM) causes significant yield losses worldwide. None of the Egyptian wheat cultivars was detected to be highly resistant to such a severe disease. Therefore, a diverse spring wheat panel was evaluated for PM seedling resistance using different Bgt conidiospores collected from Egyptian fields in two growing seasons. The evaluation was done in two separate experiments. Highly significant differences were found between the two experiments suggesting the presence of different isolates populations. Highly significant differences were found among the tested genotypes confirming the ability to improve PM resistance using the recent panel. Genome-wide association study (GWAS) was done for each experiment separately and a total of 71 significant markers located within 36 gene models were identified. The majority of these markers are located on chromosome 5B. Haplotype block analysis identified seven blocks containing the significant markers on chromosome 5B. Five gene models were identified on the short arm of the chromosome. Gene enrichment analysis identified five and seven pathways based on the biological process and molecular functions respectively for the detected gene models. All these pathways are associated with disease resistance in wheat. The genomic regions on 5B seem to be novel regions that are associated with PM resistance under Egyptian conditions. Selection of superior genotypes was done and Grecian genotypes seem to be a good source for improving PM resistance under Egyptian conditions.
Collapse
Affiliation(s)
- Amira M.I. Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Rania M. Hamdy
- Food Science and Technology Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
10
|
Du Y, Amin N, Ahmad N, Zhang H, Zhang Y, Song Y, Fan S, Wang P. Identification of the Function of the Pathogenesis-Related Protein GmPR1L in the Resistance of Soybean to Cercospora sojina Hara. Genes (Basel) 2023; 14:genes14040920. [PMID: 37107678 PMCID: PMC10137329 DOI: 10.3390/genes14040920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Pathogenesis-related proteins, often used as molecular markers of disease resistance in plants, can enable plants to obtain systemic resistance. In this study, a gene encoding a pathogenesis-related protein was identified via RNA-seq sequencing analysis performed at different stages of soybean seedling development. Because the gene sequence showed the highest similarity with PR1L sequence in soybean, the gene was named GmPR1-9-like (GmPR1L). GmPR1L was either overexpressed or silenced in soybean seedlings through Agrobacterium-mediated transformation to examine the resistance of soybean to infection caused by Cercospora sojina Hara. The results revealed that GmPR1L-overexpressing soybean plants had a smaller lesion area and improved resistance to C. sojina infection, whereas GmPR1L-silenced plants had low resistance to C. sojina infection. Fluorescent real-time PCR indicated that overexpression of GmPR1L induced the expression of genes such as WRKY, PR9, and PR14, which are more likely to be co-expressed during C. sojina infection. Furthermore, the activities of SOD, POD, CAT, and PAL were significantly increased in GmPR1L-overexpressing soybean plants after seven days of infection. The resistance of the GmPR1L-overexpressing lines OEA1 and OEA2 to C. sojina infection was significantly increased from a neutral level in wild-type plants to a moderate level. These findings predominantly reveal the positive role of GmPR1L in inducing resistance to C. sojina infection in soybean, which may facilitate the production of improved disease-resistant soybean cultivars in the future.
Collapse
Affiliation(s)
- Yeyao Du
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Nooral Amin
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanzhu Zhang
- Jilin Provincial Seed Management Station, Changchun 130033, China
| | - Ye Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130118, China
| | - Yang Song
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Sujie Fan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Piwu Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
11
|
Notopoulou S, Gkekas I, Petrakis S. Omics Analyses in a Neural Stem Cell Model of Familial Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:149-160. [PMID: 37525039 DOI: 10.1007/978-3-031-31978-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting millions of people worldwide. Despite considerable efforts, the underlying pathological mechanisms remain elusive, and yet, no treatment has been developed to efficiently reverse or modify disease progression. Thus, new experimental models are required to provide insights into the pathology of PD. Small-molecule neural precursor cells (smNPCs) are ideal for the study of neurodegenerative disorders due to their neural identity and stem cell properties. Cytoplasmic aggregates of α-synuclein (αSyn) are considered a hallmark of PD and a point mutation in the gene encoding p.A53T is responsible for a familial PD form with earlier and robust symptom onset. In order to study the cellular pathology of PD, we genetically modified smNPCs to inducibly overexpress EYFP-SNCA A53T. This cellular model was biochemically characterized, while dysregulated biological pathways and key regulators of PD pathology were identified by computational analyses. Our study indicates three novel genes, UBA52, PIP5K1A, and RPS2, which may mediate PD cellular pathology.
Collapse
Affiliation(s)
| | - Ioannis Gkekas
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Spyros Petrakis
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| |
Collapse
|
12
|
Zhao Y, Zhang F, Mickan B, Wang D. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. PLANT CELL REPORTS 2023; 42:165-179. [PMID: 36348065 DOI: 10.1007/s00299-022-02947-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Inoculation of wheat seedling with Bacillus sp. wp-6 changed amino acid metabolism and flavonoid synthesis and promoted plant growth. Plant growth-promoting rhizobacteria (PGPR), which can reduce the use of agrochemicals, is vital for the development of sustainable agriculture. In this study, proteomics and metabolomics analyses were performed to investigate the effects of inoculation with a PGPR, Bacillus sp. wp-6, on wheat (Triticum aestivum L.) seedling growth. The results showed that inoculation with Bacillus sp. wp-6 increased shoot and root fresh weights by 19% and 18%, respectively, after 40 days. The expression levels of alpha-linolenic acid metabolism-related proteins and metabolites (lipoxygenase 2, allene oxide synthase 2, jasmonic acid, 17-hydroxylinolenic acid) and flavonoid biosynthesis-related proteins and metabolites (chalcone synthase 2 and PHC 4'-O-glucoside) were up-regulated. In addition, the expression levels of amino acid metabolism-related proteins (NADH-dependent glutamate synthase, bifunctional aspartokinase/homoserine, anthranilate synthase alpha subunit 1, and 3-phosphoshikimate 1-carboxyvinyltransferase) and metabolites (L-aspartate, L-arginine, and S-glutathionyl-L-cysteine) were also significantly up-regulated. Among them, NADH-dependent glutamate synthase and bifunctional aspartokinase/homoserine could act as regulators of nitrogen metabolism. Overall, inoculation of wheat with Bacillus sp. wp-6 altered alpha-linolenic acid metabolism, amino acid metabolism, and flavonoid synthesis and promoted wheat seedling growth. This study will deepen our understanding of the mechanism by which Bacillus sp. wp-6 promotes wheat growth using proteomics and metabolomics.
Collapse
Affiliation(s)
- Yaguang Zhao
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| | - Fenghua Zhang
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China.
| | - Bede Mickan
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6001, Australia
| | - Dan Wang
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| |
Collapse
|
13
|
Zhang H, Yuan M, Tang C, Wang R, Cao M, Chen X, Wang D, Li M, Wu L. A novel nanocomposite that effectively prevents powdery mildew infection in wheat. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153858. [PMID: 36356512 DOI: 10.1016/j.jplph.2022.153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The rapidly growing world population is constantly increasing the demand for food. Being the second most consumed food crop, wheat hold an important economic position. However, powdery mildew is a disease that seriously affects the improvement in the yield and quality of wheat. Currently, triadimefon is the chemical pesticide that is predominantly used to prevent powdery mildew during wheat production. However, using triadimefon not only pollutes the environment, but also deteriorates the quality of harvested wheat grains. In this study, a nanocomposite complex with optimal montmorillonite and dimethyl silicone oil (OMM), which interact with each other through numerous hydrogen bonds. OMM was sprayed onto the surface of the wheat leaves to ensure a uniform nano isolation film that was found to effectively inhibit the contact germination of powdery mildew spores and reduce the disease index by 99.30%. OMM also significantly alleviated both physiological and biochemical stress of powdery mildew infection on the wheat. Furthermore, OMM treatment was found to significantly improve the processed quality of harvested grains. These results demonstrate that OMM treatment is an efficient and environmentally sustainable approach that is suitable for the large-scale prevention of powdery mildew infection in wheat.
Collapse
Affiliation(s)
- Huilan Zhang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Ren Wang
- Anhui Guotaizhongxin Testing Technology Co., LTD, Baohe District Dalian Road, Hefei, 230051, Anhui, PR China
| | - Minghui Cao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Xu Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, PR China
| | - Minghao Li
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Zhongke Taihe Experimental Station, Jiuxian Town G105 East Side of the National Road, Taihe, 236626, PR China.
| |
Collapse
|
14
|
Zhang Y, Dong W, Zhao C, Ma H. Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection. BMC PLANT BIOLOGY 2022; 22:509. [PMID: 36319971 PMCID: PMC9628184 DOI: 10.1186/s12870-022-03883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Poa pratensis is one of the most common cold-season turfgrasses used for urban turf building, and it is also widely used in ecological environment management worldwide. Powdery mildew is a common disease of P. pratensis. To scientifically and ecologically control lawn powdery mildew, the molecular mechanism underlying the response of P. pratensis to powdery mildew infection must better understood. RESULTS To explore molecular mechanism underlying the response of P. pratensis to powdery mildew infection, this study compared physiological changes and transcriptomic level differences between the highly resistant variety 'BlackJack' and the extremely susceptible variety 'EverGlade' under powdery mildew infection conditions. We analyzed DEGs using reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that "starch and sucrose metabolism", "photosynthesis" and "fatty acid metabolism"pathways were only enriched in 'BlackJack', and the expression of DEGs such as HXK, INV, GS, SS, AGpase and β-amylase in "starch and sucrose metabolism" pathway of 'BlackJack' were closely related to powdery mildew resistance. Meanwhile, compared with 'EverGlade', powdery mildew infection promoted synthesis of sucrose, expression of photosynthesis parameters and photosynthesis-related enzymes in leaves of 'BlackJack' and decreased accumulation of monosaccharides such as glucose and fructose. CONCLUSIONS This study identified the key metabolic pathways of a P. pratensis variety with high resistance to powdery mildew infection and explored the differences in physiological characteristics and key genes related to sugar metabolism pathways under powdery mildew stress. These findings provide important insights for studying underlying molecular response mechanism.
Collapse
Affiliation(s)
- Yujuan Zhang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenke Dong
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Chunxu Zhao
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huiling Ma
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
15
|
AlHudaib KA, Alanazi NA, Ghorbel M, El-Ganainy SM, Brini F. Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene ( AvPR-1) with Induced Expression in Oat ( Avena sativa L.) during Abiotic and Hormonal Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11172284. [PMID: 36079666 PMCID: PMC9460936 DOI: 10.3390/plants11172284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 05/04/2023]
Abstract
Pathogenesis-related protein-1 (PR-1) plays crucial roles in regulating plant responses to biotic and abiotic stresses. This study aimed to isolate and characterize the first PR-1 (AvPR-1) gene in oat (Avena sativa L.). AvPR-1 presented conserved signal peptide motifs and core amino acid composition in the functional protein domains as the protein sequence of AvPR-1 presented 98.28%, 97.7%, and 95.4% identity with known PR1 proteins isolated from Triticum aestivum PRB1-2-like, Triticum dicoccoides PRB1-2-like, and Aegilops tauschii subsp. tauschii, respectively. Bioinformatic analysis showed that the AvPR-1 protein belongs to the CAP superfamily (PF00188). Secondary and 3D structure analyses of the AvPR-1 protein were also conducted, confirming sequence conservation of PR-1 among studied species. The AvPR-1 protein harbors a calmodulin-binding domain located in its C-terminal part as previously shown for its wheat homolog TdPR1.2. Moreover, gene expression analysis showed that AvPR-1 was induced in response to many abiotic and hormonal stresses especially in leaves after treatment for 48 h. This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Naimah Asid Alanazi
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
16
|
The Single-Stranded DNA-Binding Gene Whirly ( Why1) with a Strong Pathogen-Induced Promoter from Vitis pseudoreticulata Enhances Resistance to Phytophthora capsici. Int J Mol Sci 2022; 23:ijms23148052. [PMID: 35887401 PMCID: PMC9315732 DOI: 10.3390/ijms23148052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
Vitis vinifera plants are disease-susceptible while Vitis pseudoreticulata plants are disease-resistant; however, the molecular mechanism remains unclear. In this study, the single-stranded DNA- and RNA-binding protein gene Whirly (VvWhy1 and VpWhy1) were cloned from V. vinifera "Cabernet Sauvignon" and V. pseudoreticulata "HD1". VvWhy1 and VpWhy1 promoter sequences (pVv and pVp) were also isolated; however, the identity of the promoter sequences was far lower than that between the Why1 coding sequences (CDSs). Both Why1 gene sequences had seven exons and six introns, and they had a C-terminal Whirly conserved domain and N-terminal chloroplast transit peptide, which was then verified to be chloroplast localization. Transcriptional expression showed that VpWhy1 was strongly induced by Plasmopara viticola, while VvWhy1 showed a low expression level. Further, the GUS activity indicated pVp had high activity involved in response to Phytophthora capsici infection. In addition, Nicotiana benthamiana transiently expressing pVp::VvWhy1 and pVp::VpWhy1 enhanced the P. capsici resistance. Moreover, Why1, PR1 and PR10 were upregulated in pVp transgenic N. benthamiana leaves. This research presented a novel insight into disease resistance mechanism that pVp promoted the transcription of Why1, which subsequently regulated the expression of PR1 and PR10, further enhancing the resistance to P. capsici.
Collapse
|
17
|
Li Q, Li K, Zhang Z, Li J, Wang B, Zhang Z, Zhu Y, Pan C, Sun K, He C. Transcriptomic comparison sheds new light on regulatory networks for dimorphic flower development in response to photoperiod in Viola prionantha. BMC PLANT BIOLOGY 2022; 22:336. [PMID: 35820812 PMCID: PMC9277944 DOI: 10.1186/s12870-022-03732-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chasmogamous (CH)-cleistogamous (CL) dimorphic flowers are developed in Viola prionantha. However, the environmental and genetic factors necessary for the CH-CL transition are unknown. RESULTS In the present work, short-day (SD) conditions induced CH flowers, whereas long days (LDs) triggered CL flowers in V. prionantha. Compared to fully developed CH flowers, CL flowers had less mature stamens, no nectar glands, and immature petals. Comparative transcriptomics revealed differentially expressed genes (DEGs) during CL and CH development. Core genes in the photoperiod pathway, such as V. prionantha orthologs of GIGANTEA (GI), CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which promote floral induction, were highly expressed in CL flowers, whereas UNUSUAL FLORAL ORGANS (UFO) and B-class MADS-box genes for floral organ identity and development showed an opposite alteration. Moreover, genes in the glycolytic process, sucrose metabolic process, and fatty acid biosynthetic process were all highly expressed in CH flowers. Interestingly, V. prionantha orthologs of the B-class MADS-box genes APETALA3 (AP3) and PISTILLATA (PI) might relate to these sugar-fatty acid processes and were co-expressed with GAIP-B-like and YABBY5 (YAB5), which regulate the development of the petal, stamen, and nectary. Compared to CH flowers, DEGs and hub genes in the most significantly correlated modules of the gene co-expression network, which are involved in abiotic and biotic responses, were upregulated in CL flowers. CONCLUSIONS We proposed an integrative model for transcription regulation of genes in the photoperiod pathway, floral organ development, stress response, and sugar-fatty acid processes to determine CH-CL flower development in V. prionantha. Particularly, under LDs, activated GI may induce genes involved in the stress-response pathways, and then downregulated AP3 and PI or UFO to inhibit the sugar-fatty acid metabolic processes, together forming CL flowers. In contrast, CH flowers were produced under SDs. This work provides novel insights into the developmental evolution of dimorphic flowers in Viola.
Collapse
Affiliation(s)
- Qiaoxia Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China.
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengrong Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Jigang Li
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Bo Wang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Zuoming Zhang
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Yuanyuan Zhu
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaochao Pan
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Life Science College, Northwest Normal University, Anning East Road 967, Anning, Lanzhou, 730070, Gansu, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Meng X, Yu Y, Song T, Yu Y, Cui N, Ma Z, Chen L, Fan H. Transcriptome Sequence Analysis of the Defense Responses of Resistant and Susceptible Cucumber Strains to Podosphaera xanthii. FRONTIERS IN PLANT SCIENCE 2022; 13:872218. [PMID: 35645993 PMCID: PMC9134894 DOI: 10.3389/fpls.2022.872218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii poses a continuous threat to the performance and yield of the cucumber (Cucumis sativus L.). Control in the initial stages of infection is particularly important. Here, we studied the differential physiological and transcriptomic changes between PM-resistant strain B21-a-2-1-2 and PM-susceptible strain B21-a-2-2-2 at the early stage of P. xanthii attack. When challenged with P. xanthii, the tolerant line can postpone the formation of the pathogen primary germ. Comparative transcriptomic analysis suggested that DEGs related to the cell wall and to pathogen and hormone responses were similar enriched in both cucumber lines under P. xanthii infection. Notably, the number of DEGs triggered by P. xanthii in B21-a-2-1-2 was quintuple that in B21-a-2-2-2, revealing that the success of defense of resistant cucumber is due to rapidly mobilizing multiple responses. The unique responses detected were genes related to SA signaling, MAPK signaling, and Dof and WRKY transcription factors. Furthermore, 5 P. xanthii -inducible hub genes were identified, including GLPK, ILK1, EIN2, BCDHβ1, and RGGA, which are considered to be key candidate genes for disease control. This study combined multiple analytical approaches to capture potential molecular players and will provide key resources for developing cucumber cultivars resistant to pathogen stress.
Collapse
Affiliation(s)
- Xiangnan Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tiefeng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Liu S, Xie L, Su J, Tian B, Fang A, Yu Y, Bi C, Yang Y. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Puccinia striiformis f. sp. tritici. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3719-3729. [PMID: 35293725 DOI: 10.1021/acs.jafc.2c00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust is a widespread and harmful wheat disease caused by Puccinia striiformis f. sp. tritici (Pst) worldwide. Targeted metabolome and transcriptomics analyses of CYR23 infected leaves were performed to identify the differential metabolites and differentially expressed genes related to wheat disease resistance. We observed upregulation of 33 metabolites involved in the primary and secondary metabolism, especially for homogentisic acid (HGA), p-coumaroylagmatine, and saccharopine. These three metabolites were mainly involved in the phenylpropanoid metabolic pathway, hydroxycinnamic acid amides pathway, and saccharopine pathway. Combined with transcriptome data on non-compatible interaction, the synthesis-related genes of these three differential metabolites were all upregulated significantly. The gene regulatory network involved in response to Pst infection was constructed, which revealed that several transcription factor families including WRKYs, MYBs, and bZIPs were identified as potentially hubs in wheat resistance response against Pst. An in vitro test showed that HGA effectively inhibited the germination of stripe rust fungus urediniospores and reduced the occurrence of wheat stripe rust. The results of gene silencing and overexpression of HGA synthesis-related gene 4-hydroxyphenylpyruvate dioxygenase proved that HGA was involved in wheat disease resistance. These results provided a further understanding of the disease resistance of wheat and indicated that HGA can be developed as a potential agent against Pst.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Liyang Xie
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jiaxuan Su
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Dorostkar S, Dadkhodaie A, Ebrahimie E, Heidari B, Ahmadi-Kordshooli M. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Sci Rep 2022; 12:821. [PMID: 35039525 PMCID: PMC8764039 DOI: 10.1038/s41598-021-04329-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.
Collapse
Affiliation(s)
- Saeideh Dorostkar
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
21
|
Si Z, Wang L, Qiao Y, Roychowdhury R, Ji Z, Zhang K, Han J. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species. FRONTIERS IN PLANT SCIENCE 2022; 13:960723. [PMID: 36061812 PMCID: PMC9434374 DOI: 10.3389/fpls.2022.960723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
The nucleotide-binding site (NBS)-encoding gene is a major type of resistance (R) gene, and its diverse evolutionary patterns were analyzed in different angiosperm lineages. Until now, no comparative studies have been done on the NBS encoding genes in Ipomoea species. In this study, various numbers of NBS-encoding genes were identified across the whole genome of sweet potato (Ipomoea batatas) (#889), Ipomoea trifida (#554), Ipomoea triloba (#571), and Ipomoea nil (#757). Gene analysis showed that the CN-type and N-type were more common than the other types of NBS-encoding genes. The phylogenetic analysis revealed that the NBS-encoding genes formed three monophyletic clades: CNL, TNL, and RNL, which were distinguished by amino acid motifs. The distribution of the NBS-encoding genes among the chromosomes was non-random and uneven; 83.13, 76.71, 90.37, and 86.39% of the genes occurred in clusters in sweet potato, I. trifida, I. triloba, and I. nil, respectively. The duplication pattern analysis reveals the presence of higher segmentally duplicated genes in sweet potatoes than tandemly duplicated ones. The opposite trend was found for the other three species. A total of 201 NBS-encoding orthologous genes were found to form synteny gene pairs between any two of the four Ipomea species, suggesting that each of the synteny gene pairs was derived from a common ancestor. The gene expression patterns were acquired by analyzing using the published datasets. To explore the candidate resistant genes in sweet potato, transcriptome analysis has been carried out using two resistant (JK20 and JK274) and susceptible cultivars (Tengfei and Santiandao) of sweet potato for stem nematodes and Ceratocystis fimbriata pathogen, respectively. A total of 11 differentially expressed genes (DEGs) were found in Tengfei and JK20 for stem nematodes and 19 DEGs in Santiandao and JK274 for C. fimbriata. Moreover, six DEGs were further selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. The results may provide new insights into the evolution of NBS-encoding genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Zengzhi Si,
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)–Volcani Center, Rishon LeZion, Israel
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
22
|
Yang Z, Zhi P, Chang C. Priming seeds for the future: Plant immune memory and application in crop protection. FRONTIERS IN PLANT SCIENCE 2022; 13:961840. [PMID: 35968080 PMCID: PMC9372760 DOI: 10.3389/fpls.2022.961840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 05/12/2023]
Abstract
Plants have evolved adaptive strategies to cope with pathogen infections that seriously threaten plant viability and crop productivity. Upon the perception of invading pathogens, the plant immune system is primed, establishing an immune memory that allows primed plants to respond more efficiently to the upcoming pathogen attacks. Physiological, transcriptional, metabolic, and epigenetic changes are induced during defense priming, which is essential to the establishment and maintenance of plant immune memory. As an environmental-friendly technique in crop protection, seed priming could effectively induce plant immune memory. In this review, we highlighted the recent advances in the establishment and maintenance mechanisms of plant defense priming and the immune memory associated, and discussed strategies and challenges in exploiting seed priming on crops to enhance disease resistance.
Collapse
|
23
|
Sulfur Induces Resistance against Canker Caused by Pseudomonas syringae pv. actinidae via Phenolic Components Increase and Morphological Structure Modification in the Kiwifruit Stems. Int J Mol Sci 2021; 22:ijms222212185. [PMID: 34830066 PMCID: PMC8625120 DOI: 10.3390/ijms222212185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.
Collapse
|
24
|
Zhang P, Zhu Y, Zhou S. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC PLANT BIOLOGY 2021; 21:24. [PMID: 33413112 PMCID: PMC7791650 DOI: 10.1186/s12870-020-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cucumber (Cucumis sativus L.) is a widely planted vegetable crop that suffers from various pathogen infections. Powdery mildew (PM) is typical disease caused by Sphaerotheca fuliginea infection and destroys the production of cucumber. However, the metabolic responses to S. fuliginea infection are largely unknown. RESULTS In our study, a PM resistant variety 'BK2' and a susceptible variety 'H136' were used to screen differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) under S. fuliginea infection. Most of DEGs and DAMs were enriched in several primary and secondary metabolic pathways, including flavonoid, hormone, fatty acid and diterpenoid metabolisms. Our data showed that many flavonoid-related metabolites were significantly accumulated in BK2 rather than H136, suggesting an essential role of flavonoids in formation of resistant quality. Changes in expression of CYP73A, CYP81E1, CHS, F3H, HCT and F3'M genes provided a probable explanation for the differential accumulation of flavonoid-related metabolites. Interestingly, more hormone-related DEGs were detected in BK2 compared to H136, suggesting a violent response of hormone signaling pathways in the PM-resistant variety. The number of fatty acid metabolism-related DAMs in H136 was larger than that in BK2, indicating an active fatty acid metabolism in the PM-susceptible variety. CONCLUSIONS Many differentially expressed transcription factor genes were identified under S. fuliginea infection, providing some potential regulators for the improvement of PM resistance. PM resistance of cucumber was controlled by a complex network consisting of various hormonal and metabolic pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|