1
|
Lin M, Sun L, Liu X, Fan X, Zhang Y, Jiang J, Liu C. Genome-Wide Association Study of Grape Texture Based on Puncture. Int J Mol Sci 2024; 25:13065. [PMID: 39684775 DOI: 10.3390/ijms252313065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Grapes are grown extensively around the world and play a crucial role in overall fruit production globally. The quality of the grape is largely determined by the texture of the flesh, making it a key focus for grape breeders. Our study was conducted on 437 grape accessions using a puncture method to analyze berry texture characteristics. The results reveal strong correlations among the five texture parameters of grape accessions. Following the GWAS analysis using 2,124,668 population SNPs, 369 significant SNP locations linked to the grape berry texture were discovered. Through the process of gene annotation and expression analysis in the localization regions, several genes potentially linked to berry texture were identified, including E13A, FIS1A, CML35, AGL2, and AGL62. E13A, FIS1A, and CML35 were identified as potentially more relevant to grape berry texture based on gene expression analysis. Further investigation through transient transformation demonstrated that overexpressing E13A and CML35 resulted in notable changes in grape pulp texture. During this study, the berry textures of 437 grape accessions were comprehensively evaluated, and several important candidate genes were screened based on GWAS and analysis of gene function. This discovery paves the way for future research and breeding initiatives related to grape berry texture.
Collapse
Affiliation(s)
- Meiling Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xuewei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- ZhongYuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453424, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
2
|
Lin H, Ma L, Guo Q, Liu C, Hou Y, Liu Z, Zhao Y, Jiang C, Guo X, Guo Y. Berry texture QTL and candidate gene analysis in grape ( Vitis vinifera L.). HORTICULTURE RESEARCH 2023; 10:uhad226. [PMID: 38077492 PMCID: PMC10709548 DOI: 10.1093/hr/uhad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 10/16/2024]
Abstract
Berry texture is a noteworthy economic trait for grape; however, the genetic bases and the complex gene expression and regulatory mechanism for the diverse changes in berry texture are still poorly understood. In this study, the results suggest that it is difficult to obtain high-mesocarp firmness (MesF) and high-pericarp puncture hardness (PPH) grape cultivars with high pericarp brittleness (PerB). The high-density linkage map was constructed using whole-genome resequencing based on 151 F1 individuals originating from intraspecific hybridization between the firm-flesh cultivar 'Red Globe' and soft-flesh cultivar 'Muscat Hamburg'. The total length of the consensus map was 1613.17 cM, with a mean genetic distance between adjacent bin markers of 0.59 cM. Twenty-seven quantitative trait loci (QTLs) for berry MesF, PPH, and PerB were identified in linkage groups (LGs) 1, 3, 4, 6, 8, 9, 10, 11, 14, 16, and 17, including twelve QTLs that were firstly detected in LGs 6, 11, and 14. Fourteen promising candidate genes were identified from the stable QTL regions in LGs 10, 11, 14, and 17. In particular, VvWARK2 and VvWARK8 refer to chromosome 17 and are two promising candidate genes for MesF and PPH, as the VvWARK8 gene may increase pectin residue binding with WARK for high berry firmness maintenance and the allele for VvWARK2 carrying the 'CC' and 'GA' genotypes at Chr17:1836764 and Chr17:1836770 may be associated with non-hard texture grape cultivars. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) verification revealed that the promising candidate transcription factor genes VvMYB4-like, VvERF113, VvWRKY31, VvWRKY1, and VvNAC83 may regulate cell wall metabolism candidate gene expression for grape berry texture changes.
Collapse
Affiliation(s)
- Hong Lin
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Li Ma
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qiuyu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Cheng Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yangming Hou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Ministry of Education Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
3
|
De Mori G, Cipriani G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023; 24:ijms24108984. [PMID: 37240329 DOI: 10.3390/ijms24108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
4
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Manzoor I, Samantara K, Bhat MS, Farooq I, Bhat KM, Mir MA, Wani SH. Advances in genomics for diversity studies and trait improvement in temperate fruit and nut crops under changing climatic scenarios. FRONTIERS IN PLANT SCIENCE 2023; 13:1048217. [PMID: 36743560 PMCID: PMC9893892 DOI: 10.3389/fpls.2022.1048217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 06/18/2023]
Abstract
Genetic improvement of temperate fruit and nut crops through conventional breeding methods is not sufficient alone due to its extreme time-consuming, cost-intensive, and hard-to-handle approach. Again, few other constraints that are associated with these species, viz., their long juvenile period, high heterozygosity, sterility, presence of sexual incompatibility, polyploidy, etc., make their selection and improvement process more complicated. Therefore, to promote precise and accurate selection of plants based on their genotypes, supplement of advanced biotechnological tools, viz., molecular marker approaches along with traditional breeding methods, is highly required in these species. Different markers, especially the molecular ones, enable direct selection of genomic regions governing the trait of interest such as high quality, yield, and resistance to abiotic and biotic stresses instead of the trait itself, thus saving the overall time and space and helping screen fruit quality and other related desired traits at early stages. The availability of molecular markers like SNP (single-nucleotide polymorphism), DArT (Diversity Arrays Technology) markers, and dense molecular genetic maps in crop plants, including fruit and nut crops, led to a revelation of facts from genetic markers, thus assisting in precise line selection. This review highlighted several aspects of the molecular marker approach that opens up tremendous possibilities to reveal valuable information about genetic diversity and phylogeny to boost the efficacy of selection in temperate fruit crops through genome sequencing and thus cultivar improvement with respect to adaptability and biotic and abiotic stress resistance in temperate fruit and nut species.
Collapse
Affiliation(s)
- Ikra Manzoor
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Momin Showkat Bhat
- Division of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Iqra Farooq
- Field Station Bonera, Pulwama, Council of Industrial and Scientific Research (CSIR) Indian Institute of Integrative Medicine, J&K, Jammu, India
| | - Khalid Mushtaq Bhat
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Mohammad Amin Mir
- Ambri Apple Research Centre, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shopian, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Anantnag, India
| |
Collapse
|
6
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
7
|
Regulation of Flowering Timing by ABA-NnSnRK1 Signaling Pathway in Lotus. Int J Mol Sci 2021; 22:ijms22083932. [PMID: 33920313 PMCID: PMC8069233 DOI: 10.3390/ijms22083932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.
Collapse
|
8
|
Wang H, Yan A, Sun L, Zhang G, Wang X, Ren J, Xu H. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC PLANT BIOLOGY 2020; 20:411. [PMID: 32883214 PMCID: PMC7470616 DOI: 10.1186/s12870-020-02630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroma, berry firmness and berry shape are three main quality traits in table grape production, and also the important target traits in grapevine breeding. However, the information about their genetic mechanisms is limited, which results in low accuracy and efficiency of quality breeding in grapevine. Mapping and isolation of quantitative trait locus (QTLs) based on the construction of genetic linkage map is a powerful approach to decipher the genetic determinants of complex quantitative traits. RESULTS In the present work, a final integrated map consisting of 3411 SLAF markers on 19 linkage groups (LGs) with an average distance of 0.98 cM between adjacent markers was generated using the specific length amplified fragment sequencing (SLAF-seq) technique. A total of 9 significant stable QTLs for Muscat flavor, berry firmness and berry shape were identified on two linkage groups among the hybrids analyzed over three consecutive years from 2016 to 2018. Notably, new stable QTLs for berry firmness and berry shape were found on LG 8 respectively for the first time. Based on biological function and expression profiles of candidate genes in the major QTL regions, 3 genes (VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350) related to berry firmness and 3 genes (VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200) linked to berry shape were highlighted. Overexpression of VIT_08s0032g01110 in transgenic Arabidopsis plants caused the change of pod shape. CONCLUSIONS A new high-density genetic map with total 3411 markers was constructed with SLAF-seq technique, and thus enabled the detection of narrow interval QTLs for relevant traits in grapevine. VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350 were found to be related to berry firmness, while VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200 were linked to berry shape.
Collapse
Affiliation(s)
- Huiling Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ailing Yan
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P.R. China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Guojun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Xiaoyue Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiancheng Ren
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Haiying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China.
| |
Collapse
|
9
|
Fu P, Wu W, Lai G, Li R, Peng Y, Yang B, Wang B, Yin L, Qu J, Song S, Lu J. Identifying Plasmopara viticola resistance Loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:75-84. [PMID: 32535323 DOI: 10.1016/j.plaphy.2020.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
Downy mildew, caused by Plasmopara viticola, is a major disease that affects grapevines, and a few resistance (R) genes have been identified thus far. In order to identify R genes, we investigated F1 progeny from a cross between the downy mildew-resistant Vitis amurensis 'Shuang Hong' and the susceptible Vitis vinifera 'Cabernet Sauvignon'. The P. viticola-resistance of the progeny varied continuously and was segregated as a quantitative trait. Genotyping-by-sequencing was used to construct linkage maps. The integrated map spanned 1898.09 cM and included 5603 single nucleotide polymorphisms on 19 linkage groups (LGs). Linkage analysis identified three quantitative trait loci (QTLs) for P. viticola resistance: 22 (Rpv22) on LG 02, Rpv23 on LG15, and Rpv24 on LG18. The phenotypic variance contributed by these three QTLs ranged from 15.9 to 30.0%. qRT-PCR analysis of R-gene expression in these QTLs revealed a CC-NBS-LRR disease resistance gene RPP8, two LRR receptor-like serine/threonine-protein kinases, a serine/threonine-protein kinase BLUS1, a glutathione peroxidase 8, an ethylene-responsive transcription factor ERF038, and a transcription factor bZIP11 were induced by P. viticola, and these genes may play important role in P. viticola response.
Collapse
Affiliation(s)
- Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongti Lai
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Rongfang Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yachun Peng
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Guangxi, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Ma L, Sun L, Guo Y, Lin H, Liu Z, Li K, Guo X. Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness. PLoS One 2020; 15:e0237526. [PMID: 32804968 PMCID: PMC7430731 DOI: 10.1371/journal.pone.0237526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Berry firmness is one of the main selection criteria for table grape breeding. However, the underlying genetic determinants and mechanisms involved in gene expression during berry development are still poorly understood. In this study, eighteen libraries sampled from Vitis vinifera L. cv. ‘Red Globe’ and ‘Muscat Hamburg’ at three developmental stages (preveraison, veraison and maturation) were analyzed by RNA sequencing (RNA-Seq). The firmness of ‘Red Globe’ was significantly higher than that of ‘Muscat Hamburg’ at the three developmental stages. In total, a set of 4,559 differentially expressed genes (DEGs) was identified between ‘Red Globe’ and ‘Muscat Hamburg’ in the preveraison (2,259), veraison (2030) and maturation stages (2682), including 302 transcription factors (TFs). Weighted gene coexpression network analysis (WGCNA) showed that 23 TFs were predicted to be highly correlated with fruit firmness and propectin content. In addition, the differential expression of the PE, PL, PG, β-GAL, GATL, WAK, XTH and EXP genes might be the reason for the differences in firmness between ‘Red Globe’ and ‘Muscat Hamburg’. The results will provide new information for analysis of grape berry firmness and softening.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Lingjun Sun
- Liaoning Institute of Pomology, Yingkou, Liaoning, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YG); (XG)
| |
Collapse
|
11
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|