1
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Ashooriyan P, Mohammadi M, Najafpour Darzi G, Nikzad M. Development of Plantago ovata seed mucilage and xanthan gum-based edible coating with prominent optical and barrier properties. Int J Biol Macromol 2023; 248:125938. [PMID: 37487996 DOI: 10.1016/j.ijbiomac.2023.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
This study investigates the fabrication of edible coating based on Plantago ovata seed mucilage (POSM). The films were prepared from POSM (1 %, w/v), glycerol (75 %, based on POSM mass), and xanthan gum (XG: 20, 30 and 40 %, based on POSM mass) by a casting method, and their physicochemical, mechanical, thermal, morphological, and barrier properties were determined. Results indicated the development of highly transparent (transparency values: 1.36 ± 0.05 to 2.42 ± 0.09) and hydrophobic films (contact angle: 101.57 ± 0.34 to107.08 ± 0.55o) with very low water vapor permeability (WVP: 2.77 ± 0.02 × 10-12 to 1.98 ± 0.04 × 10-12 g s-1m-1Pa-1), slight water solubility (31.14 ± 0.46 to 23.08 ± 0.82 %), and good mechanical properties (tensile strength: 30.87 ± 0.96 to 61.80 ± 0.71 MPa). Morphological studies also indicated smooth and uniform surfaces without pores and cracks. In addition, the films showed good antioxidant activity (61.46 to 68.71 %), and their antibacterial activity against E. coli, S. aureus and P. aeruginosa was also demonstrated. The applicability of the developed films to extend the shelf life of strawberries was shown by comparing the appearance of dip-coated strawberries and the control sample within 8 days at room temperature. Based on the results, the developed biofilms have great potential for edible coating and packaging applications.
Collapse
Affiliation(s)
- Payam Ashooriyan
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148, Babol, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148, Babol, Iran.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148, Babol, Iran
| | - Maryam Nikzad
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148, Babol, Iran
| |
Collapse
|
3
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
4
|
Mirpoor SF, Giosafatto CVL, Mariniello L, D’Agostino A, D’Agostino M, Cammarota M, Schiraldi C, Porta R. Argan (Argania spinosa L.) Seed Oil Cake as a Potential Source of Protein-Based Film Matrix for Pharmaco-Cosmetic Applications. Int J Mol Sci 2022; 23:ijms23158478. [PMID: 35955611 PMCID: PMC9368985 DOI: 10.3390/ijms23158478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Various different agri-food biomasses might be turned into renewable sources for producing biodegradable and edible plastics, potentially attractive for food, agricultural and cosmeceutical sectors. In this regard, different seeds utilized for edible and non-edible oil extraction give rise to high amounts of organic by-products, known as seed oil cakes (SOCs), potentially able to become protein-rich resources useful for the manufacturing of biodegradable films. This study reports the potential of SOC derived from Argania spinosa (argan), a well-known plant containing valuable non-refined oil suitable for food or cosmetic use, to be a promising valuable source for production of a protein-based matrix of biomaterials to be used in the pharmaco-cosmetic sector. Thus, glycerol-plasticized films were prepared by casting and drying using different amounts of argan seed protein concentrate, in the presence of increasing glycerol concentrations, and characterized for their morphological, mechanical, barrier, and hydrophilicity properties. In addition, their antioxidant activity and effects on cell viability and wound healing were investigated. The hydrophobic nature of the argan protein-based films, and their satisfying physicochemical and biological properties, suggest a biorefinery approach for the recycling of argan SOC as valuable raw material for manufacturing new products to be used in the cosmeceutical and food industries.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mirpoor
- Department of Chemical Sciences, Montesantangelo Campus, University of Naples “Federico II”, via Cintia 4, 80126 Naples, Italy; (S.F.M.); (L.M.); (R.P.)
| | - Concetta Valeria L. Giosafatto
- Department of Chemical Sciences, Montesantangelo Campus, University of Naples “Federico II”, via Cintia 4, 80126 Naples, Italy; (S.F.M.); (L.M.); (R.P.)
- Correspondence: ; Tel.: +39-0812539470
| | - Loredana Mariniello
- Department of Chemical Sciences, Montesantangelo Campus, University of Naples “Federico II”, via Cintia 4, 80126 Naples, Italy; (S.F.M.); (L.M.); (R.P.)
| | - Antonella D’Agostino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.); (M.D.); (M.C.); (C.S.)
| | - Maria D’Agostino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.); (M.D.); (M.C.); (C.S.)
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.); (M.D.); (M.C.); (C.S.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.); (M.D.); (M.C.); (C.S.)
| | - Raffaele Porta
- Department of Chemical Sciences, Montesantangelo Campus, University of Naples “Federico II”, via Cintia 4, 80126 Naples, Italy; (S.F.M.); (L.M.); (R.P.)
| |
Collapse
|
5
|
Sbehat M, Altamimi M, Sabbah M, Mauriello G. Layer-by-Layer Coating of Single-Cell Lacticaseibacillus rhamnosus to Increase Viability Under Simulated Gastrointestinal Conditions and Use in Film Formation. Front Microbiol 2022; 13:838416. [PMID: 35602083 PMCID: PMC9115559 DOI: 10.3389/fmicb.2022.838416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics and prebiotics are widely used as functional food ingredients. Viability of probiotics in the food matrix and further in the digestive system is still a challenge for the food industry. Different approaches were used to enhance the viability of probiotics including microencapsulation and layer-by-layer cell coating. The of aim of this study was to evaluate the viability of coated Lacticaseibacillus rhamnosus using a layer-by-layer (LbL) technique with black seed protein (BSP) extracted from Nigella sativa defatted seeds cakes (NsDSC), as a coating material, with alginate, inulin, or glucomannan, separately, and the final number of coating layers was 3. The viable cell counts of the plain and coated L. rhamnosus were determined under sequential simulated gastric fluid (SGF) for 120 min and simulated intestinal fluid (SIF) for 180 min. Additionally, the viability after exposure to 37, 45, and 55°C for 30 min was also determined. Generally, the survivability of coated L. rhamnosus showed significant (p ≤ 0.05) improvement (<4, 3, and 1.5 logs reduction for glucomannan, alginate and inulin, respectively) compared with plain cells (∼6.7 log reduction) under sequential exposure to SGF and SIF. Moreover, the cells coated with BSP and inulin showed the best protection for L. rhamnosus under high temperatures. Edible films prepared with pectin with LbL-coated cells showed significantly higher values in their tensile strength (TS) of 50% and elongation at the break (EB) of 32.5% than pectin without LbL-coated cells. The LbL technique showed a significant protection of probiotic cells and potential use in food application.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Tymczewska A, Furtado BU, Nowaczyk J, Hrynkiewicz K, Szydłowska-Czerniak A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int J Mol Sci 2022; 23:2734. [PMID: 35269873 PMCID: PMC8911258 DOI: 10.3390/ijms23052734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to develop and characterize gelatin/polyvinyl alcohol (G/PVA) films loaded with black cumin cake extract (BCCE) and zinc oxide nanoparticles (ZnONPs). The BCCE was also applied for the green synthesis of ZnONPs with an average size of less than 100 nm. The active films were produced by a solvent-casting technique, and their physicochemical and antibacterial properties were investigated. Supplementation of G/PVA film in ZnONPs decreased the tensile strength (TS) from 2.97 MPa to 1.69 MPa. The addition of BCCE and ZnONPs increased the elongation at the break (EAB) of the enriched film by about 3%. The G/PVA/BCCE/ZnONPs film revealed the lowest water vapor permeability (WVP = 1.14 × 10-9 g·mm·Pa-1·h-1·mm-2) and the highest opacity (3.41 mm-1). The QUick, Easy, New, CHEap and Reproducible (QUENCHER) methodologies using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) were applied to measure antioxidant capacity (AC) of the prepared films. The incorporation of BCCE and ZnONPs into G/PVA films enhanced the AC by 8-144%. The films containing ZnONPs and a mixture of BCCE and ZnONPs inhibited the growth of three Gram-positive bacterial strains. These nanocomposite films with desired functional properties can be recommended to inhibit microbial spoilage and oxidative rancidity of packaged food.
Collapse
Affiliation(s)
- Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Hemp (Cannabis sativa) seed oilcake as a promising by-product for developing protein-based films: Effect of transglutaminase-induced crosslinking. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Functionality of Films from Nigella sativa Defatted Seed Cake Proteins Plasticized with Grape Juice: Use in Wrapping Sweet Cherries. COATINGS 2021. [DOI: 10.3390/coatings11111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main aim of this work is to improve the functionality of Nigella sativa protein concentrate (NSPC) films by using grape juice (GJ). The film’s mechanical, antioxidant, and antimicrobial activities were evaluated. The obtained results showed, for the first time, that GJ at concentrations of 2%–10% (v/v) are able to act as plasticizer for the NSPC films with promising film properties. The results showed that the tensile strength and Young’s modulus of NSPC films were reduced significantly when the GJ increased. However, the NSPC films prepared with 6% GJ observed a higher elongation at break compared with other films. Moreover, the obtained films showed very interesting and promising results for their antioxidant and antimicrobial properties compared with the control films. The sweet cherries wrapped with NSPC film showed that the TSS (Brix) was significantly lower compared to the control, after 10 days of storage. However, the titratable acidity, pH value, and L* of all cherries, either wrapped or not, was not significantly different in all storage times. On the other hand, hue angle was significantly lower after 10 days of storage at −18 °C compared with control films. GJ has a multi-functional effect for protein-based films as plasticizer, antioxidant, and antimicrobial function.
Collapse
|
9
|
Qazanfarzadeh Z, Kadivar M, Shekarchizadeh H, Di Girolamo R, Giosafatto CVL, Porta R. Secalin enzymatically cross-linked by either papain and N-acetyl-dl-homocysteine thiolactone or transglutaminase: Improving of protein functional properties and film manufacturing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zaky AA, Shim JH, Abd El-Aty AM. A Review on Extraction, Characterization, and Applications of Bioactive Peptides From Pressed Black Cumin Seed Cake. Front Nutr 2021; 8:743909. [PMID: 34540882 PMCID: PMC8440799 DOI: 10.3389/fnut.2021.743909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Plenty of black cumin cake was generated as a natural waste material after pressing the oil. Nigella sativa (black cumin) seeds and cakes are of precious nutritional value as they contain proteins, phenolics, essential amino acids, and bioactive compounds. Owing to their antioxidant properties, scientists and food manufacturers have extensively developed them. Notably, global awareness among consumers about the benefits of innovative food ingredients has been increased. Meanwhile, it has to be noted that vast amounts of cake by-products are not effectively utilized, which might cause economic loss and environmental consequences. This review aimed to highlight the antioxidant abilities, extraction, characterization, functional characteristics, and utilization of active peptides acquired from black seed oil cake. This overview would critically evaluate black seed cake proteins, plentiful in bioactive peptides that might be utilized as valuable additives in feed, food, pharmaceutical, and cosmetic industries. The addition of bioactive peptides to restrain the oxidation of fat-based products and preserve food safety is also addressed.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- Department of Food Technology, National Research Centre, Cairo, Egypt
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of Science, Qilu University of Technology, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Mirpoor SF, Giosafatto CVL, Porta R. Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Porta R, Sabbah M, Di Pierro P. Biopolymers as Food Packaging Materials. Int J Mol Sci 2020; 21:ijms21144942. [PMID: 32668678 PMCID: PMC7404384 DOI: 10.3390/ijms21144942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oil-derived plastics are the most commonly used materials for packaging because of their features, low cost, and availability of resources for manufacturing [...].
Collapse
Affiliation(s)
- Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, Montesantangelo Campus, via Cintia 4, 80126 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539473
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, P.O. Box 7 Nablus, Palestine;
| | - Prospero Di Pierro
- Department of Chemical Sciences, University of Naples “Federico II”, Montesantangelo Campus, via Cintia 4, 80126 Naples, Italy;
| |
Collapse
|
13
|
Hydrocolloid-Based Coatings with Nanoparticles and Transglutaminase Crosslinker as Innovative Strategy to Produce Healthier Fried Kobbah. Foods 2020; 9:foods9060698. [PMID: 32492773 PMCID: PMC7353631 DOI: 10.3390/foods9060698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
This study addresses the effect of coating solutions on fried kobbah. Coating solutions were made of pectin (PEC) and grass pea flour (GPF), treated or not with transglutaminase (TGase) and nanoparticles (NPs)—namely mesoporous silica NPs (MSN) or chitosan NPs (CH–NPs). Acrylamide content (ACR), water, oil content and color of uncoated (control) and coated kobbah were investigated. Zeta potential, Z-average and in vitro digestion experiments were carried out. Zeta potential of CH–NPs was stable from pH 2.0 to pH 6.0 around + 35 mV but decreasing at pH > 6.0. However, the Z-average of CH–NPs increased by increasing the pH. All coating solutions were prepared at pH 6.0. ACR of the coated kobbah with TGase-treated GPF in the presence nanoparticles (MSN or CH–NPs) was reduced by 41.0% and 47.5%, respectively. However, the PEC containing CH–NPs showed the higher reduction of the ACR by 78.0%. Water content was higher in kobbah coated by PEC + CH–NPs solutions, while the oil content was lower. The color analysis indicated that kobbah with lower browning index containing lower ACR. Finally, in vitro digestion studies of both coating solutions and coated kobbah, demonstrated that the coating solutions and kobbah made by means of TGase or nanoparticles were efficiently digested.
Collapse
|
14
|
Giosafatto CVL, Fusco A, Al-Asmar A, Mariniello L. Microbial Transglutaminase as a Tool to Improve the Features of Hydrocolloid-Based Bioplastics. Int J Mol Sci 2020; 21:E3656. [PMID: 32455881 PMCID: PMC7279461 DOI: 10.3390/ijms21103656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
Several proteins from animal and plant origin act as microbial transglutaminase substrate, a crosslinking enzyme capable of introducing isopeptide bonds into proteins between the aminoacids glutamines and lysines. This feature has been widely exploited to modify the biological properties of many proteins, such as emulsifying, gelling, viscosity, and foaming. Besides, microbial transglutaminase has been used to prepare bioplastics that, because made of renewable molecules, are able to replace the high polluting plastics of petrochemical origin. In fact, most of the time, it has been shown that the microbial enzyme strengthens the matrix of protein-based bioplastics, thus, influencing the technological characteristics of the derived materials. In this review, an overview of the ability of many proteins to behave as good substrates of the enzyme and their ability to give rise to bioplastics with improved properties is presented. Different applications of this enzyme confirm its important role as an additive to recover high value-added protein containing by-products with a double aim (i) to produce environmentally friendly materials and (ii) to find alternative uses of wastes as renewable, cheap, and non-polluting sources. Both principles are in line with the bio-economy paradigm.
Collapse
Affiliation(s)
- C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
| | - Antonio Fusco
- Unità Operativa Struttura Complessa Medicina di Laboratorio, Presidio Ospedaliero Santa Maria di Loreto Nuovo, ASL Na1 Centro, 80145 Naples, Italy;
| | - Asmaa Al-Asmar
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
- Analysis, Poison control and Calibration Center (APCC), An-Najah National University, P.O. Box 7 Nablus, Palestine
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
| |
Collapse
|