1
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
2
|
Li TT, Yao WQ, Dong HB, Wang ZR, Zhang ZY, Yuan MQ, Shi L, Wang FS. Plasma proteomics-based biomarkers for predicting response to mesenchymal stem cell therapy in severe COVID-19. Stem Cell Res Ther 2023; 14:350. [PMID: 38072927 PMCID: PMC10712100 DOI: 10.1186/s13287-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to identify potential biomarkers for predicting response to MSC therapy by pre-MSC treatment plasma proteomic profile in severe COVID-19 in order to optimize treatment choice. METHODS A total of 58 patients selected from our previous RCT cohort were enrolled in this study. MSC responders (n = 35) were defined as whose resolution of lung consolidation ≥ 51.99% (the median value for resolution of lung consolidation) from pre-MSC to 28 days post-MSC treatment, while non-responders (n = 23) were defined as whose resolution of lung consolidation < 51.99%. Plasma before MSC treatment was detected using data-independent acquisition (DIA) proteomics. Multivariate logistic regression analysis was used to identify pre-MSC treatment plasma proteomic biomarkers that might distinguish between responders and non-responders to MSC therapy. RESULTS In total, 1101 proteins were identified in plasma. Compared with the non-responders, the responders had three upregulated proteins (CSPG2, CTRB1, and OSCAR) and 10 downregulated proteins (ANXA1, AGRG6, CAPG, DDX55, KV133, LEG10, OXSR1, PICAL, PTGDS, and S100A8) in plasma before MSC treatment. Using logistic regression model, lower levels of DDX55, AGRG6, PICAL, and ANXA1 and higher levels of CTRB1 pre-MSC treatment were predictors of responders to MSC therapy, with AUC of the ROC at 0.910 (95% CI 0.818-1.000) in the training set. In the validation set, AUC of the ROC was 0.767 (95% CI 0.459-1.000). CONCLUSIONS The responsiveness to MSC therapy appears to depend on baseline level of DDX55, AGRG6, PICAL, CTRB1, and ANXA1. Clinicians should take these factors into consideration when making decision to initiate MSC therapy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tian-Tian Li
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
| | - Wei-Qi Yao
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, 430030, Hubei, People's Republic of China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Hai-Bo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Zi-Ying Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Meng-Qi Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Lei Shi
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| |
Collapse
|
3
|
Saar M, Jaal J, Meltsov A, Laasfeld T, Lust H, Kasvandik S, Lavogina D. Exploring the Molecular Players behind the Potentiation of Chemotherapy Effects by Durvalumab in Lung Adenocarcinoma Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15051485. [PMID: 37242727 DOI: 10.3390/pharmaceutics15051485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.
Collapse
Affiliation(s)
- Marika Saar
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411 Tartu, Estonia
- Pharmacy, Tartu University Hospital, 50406 Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Haematology and Oncology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Alvin Meltsov
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
- Department of Computer Science, University of Tartu, 51009 Tartu, Estonia
| | - Helen Lust
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Park Y, Kim MJ, Choi Y, Kim NH, Kim L, Hong SPD, Cho HG, Yu E, Chae YK. Role of mass spectrometry-based serum proteomics signatures in predicting clinical outcomes and toxicity in patients with cancer treated with immunotherapy. J Immunother Cancer 2022; 10:e003566. [PMID: 35347071 PMCID: PMC8961104 DOI: 10.1136/jitc-2021-003566] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
Immunotherapy has fundamentally changed the landscape of cancer treatment. However, only a subset of patients respond to immunotherapy, and a significant portion experience immune-related adverse events (irAEs). In addition, the predictive ability of current biomarkers such as programmed death-ligand 1 (PD-L1) remains unreliable and establishing better potential candidate markers is of great importance in selecting patients who would benefit from immunotherapy. Here, we focus on the role of serum-based proteomic tests in predicting the response and toxicity of immunotherapy. Serum proteomic signatures refer to unique patterns of proteins which are associated with immune response in patients with cancer. These protein signatures are derived from patient serum samples based on mass spectrometry and act as biomarkers to predict response to immunotherapy. Using machine learning algorithms, serum proteomic tests were developed through training data sets from advanced non-small cell lung cancer (Host Immune Classifier, Primary Immune Response) and malignant melanoma patients (PerspectIV test). The tests effectively stratified patients into groups with good and poor treatment outcomes independent of PD-L1 expression. Here, we review current evidence in the published literature on three liquid biopsy tests that use biomarkers derived from proteomics and machine learning for use in immuno-oncology. We discuss how these tests may inform patient prognosis as well as guide treatment decisions and predict irAE of immunotherapy. Thus, mass spectrometry-based serum proteomics signatures play an important role in predicting clinical outcomes and toxicity.
Collapse
Affiliation(s)
- Yeonggyeong Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Min Jeong Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yoonhee Choi
- Department of Internal Medicine, NewYork-Presbyterian Queens, Flushing, New York, USA
| | - Na Hyun Kim
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, Illinois, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital Evanston, Evanston, Illinois, USA
| | - Seung Pyo Daniel Hong
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hyung-Gyo Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emma Yu
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Young Kwang Chae
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Semi-Quantitative MALDI Measurements of Blood-Based Samples for Molecular Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030997. [PMID: 35164262 PMCID: PMC8840133 DOI: 10.3390/molecules27030997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Accurate and precise measurement of the relative protein content of blood-based samples using mass spectrometry is challenging due to the large number of circulating proteins and the dynamic range of their abundances. Traditional spectral processing methods often struggle with accurately detecting overlapping peaks that are observed in these samples. In this work, we develop a novel spectral processing algorithm that effectively detects over 1650 peaks with over 3.5 orders of magnitude in intensity in the 3 to 30 kD m/z range. The algorithm utilizes a convolution of the peak shape to enhance peak detection, and accurate peak fitting to provide highly reproducible relative abundance estimates for both isolated peaks and overlapping peaks. We demonstrate a substantial increase in the reproducibility of the measurements of relative protein abundance when comparing this processing method to a traditional processing method for sample sets run on multiple matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) instruments. By utilizing protein set enrichment analysis, we find a sizable increase in the number of features associated with biological processes compared to previously reported results. The new processing method could be very beneficial when developing high-performance molecular diagnostic tests in disease indications.
Collapse
|
6
|
Rich P, Mitchell RB, Schaefer E, Walker PR, Dubay JW, Boyd J, Oubre D, Page R, Khalil M, Sinha S, Boniol S, Halawani H, Santos ES, Brenner W, Orsini JM, Pauli E, Goldberg J, Veatch A, Haut M, Ghabach B, Bidyasar S, Quejada M, Khan W, Huang K, Traylor L, Akerley W. Real-world performance of blood-based proteomic profiling in first-line immunotherapy treatment in advanced stage non-small cell lung cancer. J Immunother Cancer 2021; 9:jitc-2021-002989. [PMID: 34706885 PMCID: PMC8552188 DOI: 10.1136/jitc-2021-002989] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Immune checkpoint inhibition (ICI) therapy has improved patient outcomes in advanced non-small cell lung cancer (NSCLC), but better biomarkers are needed. A clinically validated, blood-based proteomic test, or host immune classifier (HIC), was assessed for its ability to predict ICI therapy outcomes in this real-world, prospectively designed, observational study. Materials and methods The prospectively designed, observational registry study INSIGHT (Clinical Effectiveness Assessment of VeriStrat® Testing and Validation of Immunotherapy Tests in NSCLC Subjects) (NCT03289780) includes 35 US sites having enrolled over 3570 NSCLC patients at any stage and line of therapy. After enrolment and prior to therapy initiation, all patients are tested and designated HIC-Hot (HIC-H) or HIC-Cold (HIC-C). A prespecified interim analysis was performed after 1-year follow-up with the first 2000 enrolled patients. We report the overall survival (OS) of patients with advanced stage (IIIB and IV) NSCLC treated in the first-line (ICI-containing therapies n=284; all first-line therapies n=877), by treatment type and in HIC-defined subgroups. Results OS for HIC-H patients was longer than OS for HIC-C patients across treatment regimens, including ICI. For patients treated with all ICI regimens, median OS was not reached (95% CI 15.4 to undefined months) for HIC-H (n=196) vs 5.0 months (95% CI 2.9 to 6.4) for HIC-C patients (n=88); HR=0.38 (95% CI 0.27 to 0.53), p<0.0001. For ICI monotherapy, OS was 16.8 vs 2.8 months (HR=0.36 (95% CI 0.22 to 0.58), p<0.0001) and for ICI with chemotherapy OS was unreached vs 6.4 months (HR=0.41 (95% CI 0.26 to 0.67), p=0.0003). HIC results were independent of programmed death ligand 1 (PD-L1). In a subgroup with PD-L1 ≥50% and performance status 0–1, HIC stratified survival significantly for ICI monotherapy but not ICI with chemotherapy. Conclusion Blood-based HIC proteomic testing provides clinically meaningful information for immunotherapy treatment decision in NSCLC independent of PD-L1. The data suggest that HIC-C patients should not be treated with ICI alone regardless of their PD-L1 expression.
Collapse
Affiliation(s)
- Patricia Rich
- Lung Cancer, Piedmont Physicians Group, Atlanta, Georgia, USA
| | | | - Eric Schaefer
- Highlands Oncology Group, Fayetteville, Arkansas, USA
| | - Paul R Walker
- Leo W Jenkins Cancer Center, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - John W Dubay
- Lewis and Faye Manderson Cancer Center at DCH Regional Medical Center, Tuscaloosa, Alabama, USA
| | - Jason Boyd
- Southeastern Medical Oncology Center, Goldsboro, North Carolina, USA
| | - David Oubre
- Pontchartrain Cancer Center, Covington, Louisiana, USA
| | - Ray Page
- The Center for Cancer and Blood Disorders, Fort Worth, Texas, USA
| | - Mazen Khalil
- St. Bernards Hospital, Inc, Jonesboro, Arkansas, USA
| | - Suman Sinha
- Christus Saint Michael Health System, Texarkana, Texas, USA
| | - Scott Boniol
- Christus Cancer Treatment Center, Shreveport, Louisiana, USA
| | - Hafez Halawani
- St. Frances Cabrini Hospital Cancer Center, Alexandria, Louisiana, USA
| | - Edgardo S Santos
- Florida Precision Oncology, Division of Genesis Care, Aventura, Florida, USA
| | - Warren Brenner
- Lynn Clinical Research Institute, Boca Raton, Florida, USA
| | | | - Emily Pauli
- Clearview Cancer Institute, Huntsville, Alabama, USA
| | - Jonathan Goldberg
- Clinical Research Alliance, Caremount Medical, Mount Kisco, New York, USA
| | - Andrea Veatch
- Northwest Medical Specialties, Puyallup, Washington, USA
| | - Mitchell Haut
- Hematology and Oncology Associates, Inc, Canton, Ohio, USA
| | | | | | | | | | - Kan Huang
- Phelps County Regional Medical Center, Rolla, Missouri, USA
| | | | - Wallace Akerley
- Huntsman Cancer Institute Cancer Hospital, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Yoon SJ, Lee CB, Chae SU, Jo SJ, Bae SK. The Comprehensive "Omics" Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. Int J Mol Sci 2021; 22:6932. [PMID: 34203237 PMCID: PMC8268114 DOI: 10.3390/ijms22136932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
In the past decade, immunotherapies have been emerging as an effective way to treat cancer. Among several categories of immunotherapies, immune checkpoint inhibitors (ICIs) are the most well-known and widely used options for cancer treatment. Although several studies continue, this treatment option has yet to be developed into a precise application in the clinical setting. Recently, omics as a high-throughput technique for understanding the genome, transcriptome, proteome, and metabolome has revolutionized medical research and led to integrative interpretation to advance our understanding of biological systems. Advanced omics techniques, such as multi-omics, single-cell omics, and typical omics approaches, have been adopted to investigate various cancer immunotherapies. In this review, we highlight metabolomic studies regarding the development of ICIs involved in the discovery of targets or mechanisms of action and assessment of clinical outcomes, including drug response and resistance and propose biomarkers. Furthermore, we also discuss the genomics, proteomics, and advanced omics studies providing insights and comprehensive or novel approaches for ICI development. The overview of ICI studies suggests potential strategies for the development of other cancer immunotherapies using omics techniques in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea; (S.J.Y.); (C.B.L.); (S.U.C.); (S.J.J.)
| |
Collapse
|
8
|
Morcuende-Ventura V, Hermoso-Durán S, Abian-Franco N, Pazo-Cid R, Ojeda JL, Vega S, Sanchez-Gracia O, Velazquez-Campoy A, Sierra T, Abian O. Fluorescence Liquid Biopsy for Cancer Detection Is Improved by Using Cationic Dendronized Hyperbranched Polymer. Int J Mol Sci 2021; 22:6501. [PMID: 34204408 PMCID: PMC8234380 DOI: 10.3390/ijms22126501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Biophysical techniques applied to serum samples characterization could promote the development of new diagnostic tools. Fluorescence spectroscopy has been previously applied to biological samples from cancer patients and differences from healthy individuals were observed. Dendronized hyperbranched polymers (DHP) based on bis(hydroxymethyl)propionic acid (bis-MPA) were developed in our group and their potential biomedical applications explored. (2) Methods: A total of 94 serum samples from diagnosed cancer patients and healthy individuals were studied (20 pancreatic ductal adenocarcinoma, 25 blood donor, 24 ovarian cancer, and 25 benign ovarian cyst samples). (3) Results: Fluorescence spectra of serum samples (fluorescence liquid biopsy, FLB) in the presence and the absence of DHP-bMPA were recorded and two parameters from the signal curves obtained. A secondary parameter, the fluorescence spectrum score (FSscore), was calculated, and the diagnostic model assessed. For pancreatic ductal adenocarcinoma (PDAC) and ovarian cancer, the classification performance was improved when including DHP-bMPA, achieving high values of statistical sensitivity and specificity (over 85% for both pathologies). (4) Conclusions: We have applied FLB as a quick, simple, and minimally invasive promising technique in cancer diagnosis. The classification performance of the diagnostic method was further improved by using DHP-bMPA, which interacted differentially with serum samples from healthy and diseased subjects. These preliminary results set the basis for a larger study and move FLB closer to its clinical application, providing useful information for the oncologist during patient diagnosis.
Collapse
Affiliation(s)
- Violeta Morcuende-Ventura
- Instituto de Nanociencia y Materiales de Aragón (INMA), Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.H.-D.), (S.V.), (A.V.-C.)
| | - Sonia Hermoso-Durán
- Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.H.-D.), (S.V.), (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Roberto Pazo-Cid
- Hospital Universitario Miguel Servet (HUMS), Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain;
| | - Jorge L. Ojeda
- Department of Statistical Methods, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Sonia Vega
- Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.H.-D.), (S.V.), (A.V.-C.)
| | | | - Adrian Velazquez-Campoy
- Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.H.-D.), (S.V.), (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Fundación ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| | - Olga Abian
- Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.H.-D.), (S.V.), (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Kaiser NK, Steers M, Nichols CM, Mellert H, Pestano GA. Design and Characterization of a Novel Blood Collection and Transportation Device for Proteomic Applications. Diagnostics (Basel) 2020; 10:E1032. [PMID: 33276497 PMCID: PMC7761483 DOI: 10.3390/diagnostics10121032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
A major hurdle for blood-based proteomic diagnostics is efficient transport of specimens from the collection site to the testing laboratory. Dried blood spots have shown utility for diagnostic applications, specifically those where red blood cell hemolysis and contamination of specimens with hemoglobin is not confounding. Conversely, applications that are sensitive to the presence of the hemoglobin subunits require blood separation, which relies on centrifugation to collect plasma/serum, and then cold-chain custody during shipping. All these factors introduce complexities and potentially increased costs. Here we report on a novel whole blood-collection device (BCD) that efficiently separates the liquid from cellular components, minimizes hemolysis in the plasma fraction, and maintains protein integrity during ambient transport. The simplicity of the design makes the device ideal for field use. Whole blood is acquired through venipuncture and applied to the device with an exact volume pipette. The BCD design was based on lateral-flow principles in which whole blood was applied to a defined area, allowing two minutes for blood absorption into the separation membrane, then closed for shipment. The diagnostic utility of the device was further demonstrated with shipments from multiple sites (n = 33) across the U.S. sent to two different centralized laboratories for analyses using liquid chromatography/mass spectrometry (LC/MS/MS) and matrix assisted laser desorption/ionization-time of flight (MALDI-ToF) commercial assays. Specimens showed high levels of result label concordance for the LC/MS/MS assay (Negative Predictive Value = 98%) and MALDI-ToF assay (100% result concordance). The overall goal of the device is to simplify specimen transport to the laboratory and produce clinical test results equivalent to established collection methods.
Collapse
Affiliation(s)
- Nathan K. Kaiser
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, USA; (M.S.); (C.M.N.); (H.M.); (G.A.P.)
| | | | | | | | | |
Collapse
|