1
|
Liang M, Ji T, Li S, Wang X, Cui L, Gao L, Wan H, Ma S, Tian Y. Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109356. [PMID: 39637709 DOI: 10.1016/j.plaphy.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi. GUS expression analysis further confirmed the induction of CsMAP65-2 and CsMAP65-3 in both roots and nematode-induced galls. Silencing CsMAP65-2 or CsMAP65-3 using VIGS technology led to a reduction in gall size and number, as well as a decrease in GCs number (24.98% for CsMAP65-2; 19.48% for CsMAP65-3) and area (6% for CsMAP65-2; 4% for CsMAP65-3), compared to control plants. Furthermore, qRT-PCR analysis revealed upregulation of CsMYC2、CsPR1、CsPAD4, and CsPDF1 in CsMAP65-2 silenced lines and upregulation of CsFRK1 in CsMAP65-3 silenced lines, while CsJAZ1 was downregulated in both silenced lines. These findings suggest that CsMAP65-2 and CsMAP65-3 are critical for GCs development during RKN infection and provide a foundation for breeding nematode-resistant cucumber varieties. This research also offers insights for developing sustainable nematode management strategies in gourd crop cultivation.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
González-Cardona C, López WR, Jovel J, Soto-Suárez M, Ceballos-Aguirre N. Paraburkholderia tropica Primes a Multilayered Transcriptional Defense Response to the Nematode Meloidogyne spp. in Tomato. Int J Mol Sci 2024; 25:12584. [PMID: 39684296 DOI: 10.3390/ijms252312584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, Paraburkholderia tropica has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by P. tropica (TB group (tomato-bacteria group)), Meloidogyne spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of P. tropica.
Collapse
Affiliation(s)
- Carolina González-Cardona
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| | - Walter Ricardo López
- Departamento de Física y Química, Facultad de Ciencias Naturales, Universidad Nacional de Colombia Sede Manizales, km 9 vía Aeropuerto la Nubia, Manizales 170003, Caldas, Colombia
| | - Juan Jovel
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Mauricio Soto-Suárez
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, km 14 vía Mosquera-Bogotá, Mosquera 250047, Cundinamarca, Colombia
| | - Nelson Ceballos-Aguirre
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| |
Collapse
|
3
|
Chi W, Hu L, Li Z, Lin B, Zhuo K, Liao J. Transcriptome Analysis of Meloidogyne javanica and the Role of a C-Type Lectin in Parasitism. PLANTS (BASEL, SWITZERLAND) 2024; 13:730. [PMID: 38475576 DOI: 10.3390/plants13050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Meloidogyne javanica is one of the most widespread and economically important sedentary endoparasites. In this study, a comparative transcriptome analysis of M. javanica between pre-parasitic second-stage juveniles (Pre-J2) and parasitic juveniles (Par-J3/J4) was conducted. A total of 48,698 unigenes were obtained, of which 18,826 genes showed significant differences in expression (p < 0.05). In the differentially expressed genes (DEGs) from transcriptome data at Par-J3/J4 and Pre-J2, a large number of unigenes were annotated to the C-type lectin (CTL, Mg01965), the cathepsin L-like protease (Mi-cpl-1), the venom allergen-like protein (Mi-mps-1), Map-1 and the cellulase (endo-β-1,4-glucanase). Among seven types of lectins found in the DEGs, there were 10 CTLs. The regulatory roles of Mj-CTL-1, Mj-CTL-2 and Mj-CTL-3 in plant immune responses involved in the parasitism of M. javanica were investigated. The results revealed that Mj-CTL-2 could suppress programmed cell death (PCD) triggered by Gpa2/RBP-1 and inhibit the flg22-stimulated ROS burst. In situ hybridization and developmental expression analyses showed that Mj-CTL-2 was specifically expressed in the subventral gland of M. javanica, and its expression was up-regulated at Pre-J2 of the nematode. In addition, in planta silencing of Mj-CTL-2 substantially increased the plant resistance to M. javanica. Moreover, yeast co-transformation and bimolecular fluorescence complementation assay showed that Mj-CTL-2 specifically interacted with the Solanum lycopersicum catalase, SlCAT2. It was demonstrated that M. javanica could suppress the innate immunity of plants through the peroxide system, thereby promoting parasitism.
Collapse
Affiliation(s)
- Wenwei Chi
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
| | - Lili Hu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiwen Li
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
| | - Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| |
Collapse
|
4
|
Sung YW, Kim J, Yang JW, Shim D, Kim YH. Transcriptome-Based Comparative Expression Profiling of Sweet Potato during a Compatible Response with Root-Knot Nematode Meloidogyne incognita Infection. Genes (Basel) 2023; 14:2074. [PMID: 38003017 PMCID: PMC10671793 DOI: 10.3390/genes14112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
M. incognita, a root-knot nematode (RKN), infects the roots of several important food crops, including sweet potato (Ipomoea batatas Lam.), and severely reduces yields. However, the molecular mechanisms underlying infection remain unclear. Previously, we investigated differential responses to RKN invasion in susceptible and resistant sweet potato cultivars through RNA-seq-based transcriptome analysis. In this study, gene expression similarities and differences were examined in RKN-susceptible sweet potato cultivars during the compatible response to RKN infection. Three susceptible cultivars investigated in previous research were used: Dahomi (DHM), Shinhwangmi (SHM), and Yulmi (YM). Of the three cultivars, YM had the highest number of genes with altered expression in response to infection. YM was also the cultivar with the highest susceptibility to RKN. Comparisons among cultivars identified genes that were regulated in more than one cultivar upon infection. Pairwise comparisons revealed that YM and DHM shared the most regulated genes, whereas YM and SHM shared the lowest number of regulated genes. Five genes were up-regulated, and two were down-regulated, in all three cultivars. Among these, four genes were highly up-regulated in all cultivars: germin-like protein, anthranilate synthase α subunit, isocitrate lyase, and uncharacterized protein. Genes were also identified that were uniquely regulated in each cultivar in response to infection, suggesting that susceptible cultivars respond to infection through shared and cultivar-specific pathways. Our findings expand the understanding of the compatible response to RKN invasion in sweet potato roots and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Zhang H, Chen H, Tan J, Huang S, Chen X, Dong H, Zhang R, Wang Y, Wang B, Xiao X, Hong Z, Zhang J, Hu J, Zhang M. The chromosome-scale reference genome and transcriptome analysis of Solanum torvum provides insights into resistance to root-knot nematodes. FRONTIERS IN PLANT SCIENCE 2023; 14:1210513. [PMID: 37528971 PMCID: PMC10390315 DOI: 10.3389/fpls.2023.1210513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Solanum torvum (Swartz) (2n = 24) is a wild Solanaceae plant with high economic value that is used as a rootstock in grafting for Solanaceae plants to improve the resistance to a soil-borne disease caused by root-knot nematodes (RKNs). However, the lack of a high-quality reference genome of S. torvum hinders research on the genetic basis for disease resistance and application in horticulture. Herein, we present a chromosome-level assembly of genomic sequences for S. torvum combining PacBio long reads (HiFi reads), Illumina short reads and Hi-C scaffolding technology. The assembled genome size is ~1.25 Gb with a contig N50 and scaffold N50 of 38.65 Mb and 103.02 Mb, respectively as well as a BUSCO estimate of 98%. GO enrichment and KEGG pathway analysis of the unique S. torvum genes, including NLR and ABC transporters, revealed that they were involved in disease resistance processes. RNA-seq data also confirmed that 48 NLR genes were highly expressed in roots and fibrous roots and that three homologous NLR genes (Sto0288260.1, Sto0201960.1 and Sto0265490.1) in S. torvum were significantly upregulated after RKN infection. Two ABC transporters, ABCB9 and ABCB11 were identified as the hub genes in response to RKN infection. The chromosome-scale reference genome of the S. torvum will provide insights into RKN resistance.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hao Chen
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jie Tan
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Shuping Huang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xia Chen
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hongxia Dong
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Ru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Benqi Wang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Zhang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
7
|
Malviya D, Singh P, Singh UB, Paul S, Kumar Bisen P, Rai JP, Verma RL, Fiyaz RA, Kumar A, Kumari P, Dei S, Ahmed MR, Bagyaraj DJ, Singh HV. Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice ( Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol 2023; 14:1104490. [PMID: 37200920 PMCID: PMC10185796 DOI: 10.3389/fmicb.2023.1104490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 05/20/2023] Open
Abstract
Rhizosphere is the battlefield of beneficial and harmful (so called phytopathogens) microorganisms. Moreover, these microbial communities are struggling for their existence in the soil and playing key roles in plant growth, mineralization, nutrient cycling and ecosystem functioning. In the last few decades, some consistent pattern have been detected so far that link soil community composition and functions with plant growth and development; however, it has not been studied in detail. AM fungi are model organisms, besides potential role in nutrient cycling; they modulate biochemical pathways directly or indirectly which lead to better plant growth under biotic and abiotic stress conditions. In the present investigations, we have elucidated the AM fungi-mediated activation of plant defense responses against Meloidogyne graminicola causing root-knot disease in direct seeded rice (Oryza sativa L.). The study describes the multifarious effects of Funneliformis mosseae, Rhizophagus fasciculatus, and Rhizophagus intraradices inoculated individually or in combination under glasshouse conditions in rice plants. It was found that F. mosseae, R. fasciculatus and R. intraradices when applied individually or in combination modulated the biochemical and molecular mechanisms in the susceptible and resistant inbred lines of rice. AM inoculation significantly increased various plant growth attributes in plants with simultaneous decrease in the root-knot intensity. Among these, the combined application of F. mosseae, R. fasciculatus, and R. intraradices was found to enhance the accumulation and activities of biomolecules and enzymes related to defense priming as well as antioxidation in the susceptible and resistant inbred lines of rice pre-challenged with M. graminicola. The application of F. mosseae, R. fasciculatus and R. intraradices, induced the key genes involved in plant defense and signaling and it has been demonstrated for the first time. Results of the present investigation advocated that the application of F. mosseae, R. fasciculatus and R. intraradices, particularly a combination of all three, not only helped in the control of root-knot nematodes but also increased plant growth as well as enhances the gene expression in rice. Thus, it proved to be an excellent biocontrol as well as plant growth-promoting agent in rice even when the crop is under biotic stress of the root-knot nematode, M. graminicola.
Collapse
Affiliation(s)
- Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | | | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ram Lakhan Verma
- Division of Crop Improvement, ICAR-National Rice Research Institute, Cuttack, India
| | - R Abdul Fiyaz
- Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - A Kumar
- Bihar Agricultural University, Bhagalpur, India
| | - Poonam Kumari
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | | | - Mohd Reyaz Ahmed
- Department of Plant Pathology, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
| | - D J Bagyaraj
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
8
|
Ji T, Ma S, Liang M, Wang X, Gao L, Tian Y. Reference genes identification for qRT-PCR normalization of gene expression analysis in Cucumis sativus under Meloidogyne incognita infection and Pseudomonas treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1061921. [PMID: 36589116 PMCID: PMC9799720 DOI: 10.3389/fpls.2022.1061921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
qRT-PCR is a common and key technical means to study gene expression in biological research. However, reliability and accuracy of quantification by qRT-PCR is entirely dependent on the identification of appropriate reference genes. Cucumber as an economical vegetable is widely cultivated worldwide and is subject to serious nematode infection, especially from M. incognita. Plant could employ beneficial soil bacteria in the rhizosphere to enhance plant adaptability to various stresses. In this study, the optimal reference genes in cucumber under M. incognita stress and Pseudomonas treatment were calculated and confirmed. A total of thirteen candidate reference genes were identified across three different treatments. Of these, geNorm, NormFinder and BestKeeper programs combined RefFinder software identified EF1 and UBI are the most suitable reference gene in the root knot and whole root of cucumber infected M. incognita, respectively, and CACS is the most suitable reference gene in the whole root of cucumber treated by Pseudomonas. The work first validated the most suitable reference genes for the normalization gene expression in cucumber by nematode infected or Pseudomonas inoculated, and these results would facilitate the further research on M. incognita or Pseudomonas soil rhizosphere microbe interaction with cucumber.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Gao
- *Correspondence: Yongqiang Tian, ; Lihong Gao,
| | | |
Collapse
|
9
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
10
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
11
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053141. [PMID: 35270832 DOI: 10.3390/ijerph190531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/28/2023]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pramod K Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA
| | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Madhab C Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India
| | - Theodore C Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India
| | - Anil K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| |
Collapse
|
12
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3141. [PMID: 35270832 PMCID: PMC8910389 DOI: 10.3390/ijerph19053141] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India;
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India;
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA;
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Madhab C. Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India;
| | - Theodore C. Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA;
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India;
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| |
Collapse
|
13
|
Kamali S, Javadmanesh A, Stelinski LL, Kyndt T, Seifi A, Cheniany M, Zaki-Aghl M, Hosseini M, Heydarpour M, Asili J, Karimi J. Beneficial worm allies warn plants of parasite attack below-ground and reduce above-ground herbivore preference and performance. Mol Ecol 2021; 31:691-712. [PMID: 34706125 DOI: 10.1111/mec.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.
Collapse
Affiliation(s)
- Shokoofeh Kamali
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaki-Aghl
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Hosseini
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Dash M, Somvanshi VS, Budhwar R, Godwin J, Shukla RN, Rao U. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes. PLANTA 2021; 253:108. [PMID: 33866432 DOI: 10.1007/s00425-021-03625-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Resistance to rice root-knot nematode Meloidogyne graminicola in a mutant rice line is suggested to be conferred by higher expression of several genes putatively involved in damage-associated molecular pattern recognition, secondary metabolite biosynthesis including phytoalexins, and defence-related genes. Meloidogyne graminicola has emerged as the most destructive plant-parasitic nematode disease of rice (Oryza sativa L.). Genetic resistance to M. graminicola is one of the most effective methods for its management. A M. graminicola-resistant O. sativa ssp. indica mutant line-9 was previously identified through a forward genetic screen (Hatzade et al. Biologia 74:1197-1217, 2019). In the present study, we used RNA-Sequencing to investigate the molecular mechanisms conferring nematode resistance to the mutant line-9 compared to the susceptible parent JBT 36/14 at 24 h post-infection. A total of 674 transcripts were differentially expressed in line-9. Early regulation of genes putatively related to nematode damage-associated molecular pattern recognition (e.g., wall-associated receptor kinases), signalling [Nucleotide-binding, Leucine-Rich Repeat (NLRs)], pathogenesis-related (PR) genes (PR1, PR10a), defence-related genes (NB-ARC domain-containing genes), as well as a large number of genes involved in secondary metabolites including diterpenoid biosynthesis (CPS2, OsKSL4, OsKSL10, Oscyp71Z2, oryzalexin synthase, and momilactone A synthase) was observed in M. graminicola-resistant mutant line-9. It may be suggested that after the nematode juveniles penetrate the roots of line-9, early recognition of invading nematodes triggers plant immune responses mediated by phytoalexins, and other defence proteins such as PR proteins inhibit nematode growth and reproduction. Our study provides the first transcriptomic comparison of nematode-resistant and susceptible rice plants in the same genetic background and adds to the understanding of mechanisms underlying plant-nematode resistance in rice.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
15
|
Transcriptome Analysis of Eggplant Root in Response to Root-Knot Nematode Infection. Pathogens 2021; 10:pathogens10040470. [PMID: 33924485 PMCID: PMC8069755 DOI: 10.3390/pathogens10040470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Eggplant (Solanum melongena L.), which belongs to the Solanaceae family, is an important vegetable crop. However, its production is severely threatened by root-knot nematodes (RKNs) in many countries. Solanum torvum, a wild relative of eggplant, is employed worldwide as rootstock for eggplant cultivation due to its resistance to soil-borne diseases such as RKNs. In this study, to identify the RKN defense mechanisms, the transcriptomic profiles of eggplant and Solanum torvum were compared. A total of 5360 differentially expressed genes (DEGs) were identified for the response to RKN infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that these DEGs are mainly involved in the processes of response to stimulus, protein phosphorylation, hormone signal transduction, and plant-pathogen interaction pathways. Many phytohormone-related genes and transcription factors (MYB, WRKY, and NAC) were differentially expressed at the four time points (ck, 7, 14, and 28 days post-infection). The abscisic acid signaling pathway might be involved in plant-nematode interactions. qRT-PCR validated the expression levels of some of the DEGs in eggplant. These findings demonstrate the nematode-induced expression profiles and provide some insights into the nematode resistance mechanism in eggplant.
Collapse
|
16
|
Park J, Jeon HW, Jung H, Lee HH, Kim J, Park AR, Kim N, Han G, Kim JC, Seo YS. Comparative Transcriptome Analysis of Pine Trees Treated with Resistance-Inducing Substances against the Nematode Bursaphelenchus xylophilus. Genes (Basel) 2020; 11:genes11091000. [PMID: 32858932 PMCID: PMC7564552 DOI: 10.3390/genes11091000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus causes pine wilt disease, which results in substantial economic and environmental losses across pine forests worldwide. Although systemic acquired resistance (SAR) is effective in controlling PWN, the detailed mechanisms underlying the resistance to PWN are unclear. Here, we treated pine samples with two SAR elicitors, acibenzolar-S-methyl (ASM) and methyl salicylic acid (MeSA) and constructed an in vivo transcriptome of PWN-infected pines under SAR conditions. A total of 252 million clean reads were obtained and mapped onto the reference genome. Compared with untreated pines, 1091 and 1139 genes were differentially upregulated following the ASM and MeSA treatments, respectively. Among these, 650 genes showed co-expression patterns in response to both SAR elicitors. Analysis of these patterns indicated a functional linkage among photorespiration, peroxisome, and glycine metabolism, which may play a protective role against PWN infection-induced oxidative stress. Further, the biosynthesis of flavonoids, known to directly control parasitic nematodes, was commonly upregulated under SAR conditions. The ASM- and MeSA-specific expression patterns revealed functional branches for myricetin and quercetin production in flavonol biosynthesis. This study will enhance the understanding of the dynamic interactions between pine hosts and PWN under SAR conditions.
Collapse
Affiliation(s)
- Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hee Won Jeon
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Korea;
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (J.P.); (H.J.); (H.-H.L.); (N.K.); (G.H.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| |
Collapse
|