1
|
González-Ponce KS, Celaya-Herrera S, Mendoza-Acosta MF, Casados-Vázquez LE. Cell-Free Systems and Their Importance in the Study of Membrane Proteins. J Membr Biol 2025:10.1007/s00232-024-00333-0. [PMID: 39760767 DOI: 10.1007/s00232-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
The Cell-Free Protein Synthesis (CFPS) is an innovative technique used to produce various proteins. It has several advantages, including short expression times, no strain engineering is required, and toxic proteins such as membrane proteins can be produced. However, the most important advantage is that it eliminates the need for a living cell as a production system. Membrane proteins (MPs) are difficult to express in heterologous strains such as Escherichia coli. Modified strains must be used, and sometimes the strain produces them as inclusion bodies, which makes purification difficult. CFPS can avoid the problem of toxicity and, with the use of additives, allows the production of folded and functional membrane proteins. In this review, we focus on describing what cell-free systems are. We address the advantages and disadvantages of the different organisms that can be used to obtain cell extracts, including PURE systems, where the components are obtained recombinantly, and the methodologies that allow the synthesis of membrane proteins in cell-free systems, which, given their hydrophobic nature, require additives for their correct folding.
Collapse
Affiliation(s)
- Karen Stephania González-Ponce
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Samuel Celaya-Herrera
- Departamento de Formación Integral e Institucional, Fraccionamiento Industrial Puerto Interior, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional. Avenida Mineral de Valenciana 200, C.P. 36275, Silao de La Victoria, Guanajuato, México
| | - María Fernanda Mendoza-Acosta
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Luz Edith Casados-Vázquez
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Investigadoras e Investigadores por México CONAHCYT, Consejo Nacional de Humanidades Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico, México.
| |
Collapse
|
2
|
Deuker D, Asilonu E, Bracewell DG, Frank S. Adeno-Associated Virus 5 Protein Particles Produced by E. coli Cell-Free Protein Synthesis. ACS Synth Biol 2024; 13:2710-2717. [PMID: 39178386 PMCID: PMC11421080 DOI: 10.1021/acssynbio.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of E. coli-based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs). AAV5 virus protein 3 (VP3) constructs, both with and without Strep-tag II, were expressed with CFPS. Lower reaction temperatures resulted in increased solubility, with the untagged variant containing nearly 90% more soluble VLP VP3 protein at 18 °C than at 37 °C. Affinity chromatography of N-terminally Strep(II)-tagged VP3 enabled successful isolation with minimal processing. DLS and TEM confirmed the presence of ∼20 nm particles. Furthermore, the N-terminally tagged AAV5 VP3 VLPs were biologically active, successfully internalizing into HeLa cells. This study describes an innovative approach to AAV VLP production using E. coli-based CFPS, demonstrating its potential for rapid and biologically active AAV VLP synthesis.
Collapse
Affiliation(s)
- Danielle Deuker
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ernest Asilonu
- Cytiva Europe Limited, 5 Harbourgate Business Park, Southampton Road, Portsmouth, Hampshire PO6 4BQ, United Kingdom
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Raja A, Kasana A, Verma V. Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges. Mol Biotechnol 2024:10.1007/s12033-024-01270-y. [PMID: 39222285 DOI: 10.1007/s12033-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.
Collapse
Affiliation(s)
- Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Abhishek Kasana
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
4
|
Sabukunze S, Gu H, Zhao L, Jia H, Guo H. Comparison of the performance of SAG2, GRA6, and GRA7 for serological diagnosis of Toxoplasma gondii infection in cats. Front Vet Sci 2024; 11:1423581. [PMID: 38898997 PMCID: PMC11186378 DOI: 10.3389/fvets.2024.1423581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasmosis is an important zoonotic disease caused by Toxoplasma gondii that can infect almost all warm-blooded animals worldwide, including humans. The high prevalence of T. gondii infection and its ability to cause serious harm to humans and animals, especially immunodeficient individuals, make it a key public health issue. Accurate diagnostic tools with high sensitivity are needed for controlling T. gondii infection. In the current study, we compared the performance of recombinant SAG2, GRA6, and GRA7 in ELISA for the serological diagnosis of T. gondii infection in cats. We further investigated the antigenicity of recombinant dense granule protein 3 (rGRA3), rGRA5, rGRA8, and rSRS29A expressed in a plant-based, cell-free expression system for detecting antibodies in T. gondii-infected cats. In summary, our data suggest that GRA7 is more sensitive than the other two antigens for the serodiagnosis of T. gondii infection in cats, and GRA3 expressed in the cell-free system is also a priming antigen in serological tests for detecting T. gondii infection in cats.
Collapse
Affiliation(s)
- Serges Sabukunze
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haorong Gu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Ferrer-Miralles N, Garcia-Fruitós E. Heterologous Expression of Difficult to Produce Proteins in Bacterial Systems. Int J Mol Sci 2024; 25:822. [PMID: 38255896 PMCID: PMC10815505 DOI: 10.3390/ijms25020822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Proteins play a crucial role in maintaining homeostasis, providing structure, and enabling various functions in biological systems [...].
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain;
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production Group, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
6
|
Liu Y, Zhao Z, Song Y, Yin Y, Wu F, Jiang H. Usage of Cell-Free Protein Synthesis in Post-Translational Modification of μ-Conopeptide PIIIA. Mar Drugs 2023; 21:421. [PMID: 37623702 PMCID: PMC10455749 DOI: 10.3390/md21080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in Conus literatus. However, the hydroxylation machinery of proline in conopeptides is still unclear. In order to address the hydroxylation mechanism of proline in μ-PIIIA, three recombinant plasmids encoding different hybrid precursors of μ-PIIIA were constructed and crossly combined with protein disulfide isomerase, prolyl 4 hydroxylase, and glutaminyl cyclase in a continuous exchange cell-free protein system. The findings showed that prolyl 4 hydroxylase might recognize the propeptide of μ-PIIIA to achieve the hydroxylation of proline, while the cyclization of glutamate was also formed. Additionally, in Escherichia coli, the co-expression plasmid encoding prolyl 4 hydroxylase and the precursor of μ-PIIIA containing pro and mature regions were used to validate the continuous exchange cell-free protein system. Surprisingly, in addition to the two hydroxyproline residues and one pyroglutamyl residue, three disulfide bridges were formed using Trx as a fusion tag, and the yield of the fusion peptide was approximately 20 mg/L. The results of electrophysiology analysis indicated that the recombinant μ-PIIIA without C-terminal amidate inhibited the current of hNaV1.4 with a 939 nM IC50. Our work solved the issue that it was challenging to quickly generate post-translationally modified conopeptides in vitro. This is the first study to demonstrate that prolyl 4 hydroxylase catalyzes the proline hydroxylation through recognition in the propeptide of μ-PIIIA, and it will provide a new way for synthesizing multi-modified conopeptides with pharmacological activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
7
|
Wang Y, Wang T, Chen X, Lu Y. IRES-mediated Pichia pastoris cell-free protein synthesis. BIORESOUR BIOPROCESS 2023; 10:35. [PMID: 38647944 PMCID: PMC10992869 DOI: 10.1186/s40643-023-00653-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 04/25/2024] Open
Abstract
Cell-free protein synthesis (CFPS) system is an ideal platform for fast and convenient protein research and has been used for macromolecular assembly, unnatural amino acid embedding, glycoprotein production, and more. To realize the construction of an efficient eukaryotic CFPS platform with the advantages of low cost and short time, a CFPS system based on the yeast Pichia pastoris was built in this study. The internal ribosomal entry site (IRES) can independently initiate translation and thus promote protein synthesis. The Kozak sequences can facilitate translation initiation. Therefore, the screening of IRES and its combination with Kozak was performed, in which cricket paralysis virus (CRPV) exhibited as the best translation initiation element from 14 different IRESs. Furthermore, the system components and reaction environment were explored. The protein yield was nearly doubled by the addition of RNase inhibitor. The cell extract amount, energy regeneration system (phosphocreatine and phosphocreatine kinase), and metal ions (K+ and Mg2+) were optimized to achieve the best protein synthesis yield. This P. pastoris CFPS system can extend the eukaryotic CFPS platform, providing an enabling technology for fast prototyping design and functional protein synthesis.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
9
|
Chen Y, Liu WQ, Zheng X, Liu Y, Ling S, Li J. Cell-Free Biosynthesis of Lysine-Derived Unnatural Amino Acids with Chloro, Alkene, and Alkyne Groups. ACS Synth Biol 2023; 12:1349-1357. [PMID: 37040607 DOI: 10.1021/acssynbio.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Crude extract-based cell-free expression systems have been used to produce natural products by reconstitution of their biosynthetic pathways in vitro. However, the chemical scope of cell-free synthesized natural compounds is still limited, which is partially due to the length of biosynthetic gene clusters. To expand the product scope, here, we report cell-free biosynthesis of several lysine-derived unnatural amino acids with functional moieties such as chloro, alkene, and alkyne groups. Specifically, five related enzymes (i.e., halogenase, oxidase, lyase, ligase, and hydroxylase) involved in β-ethynylserine biosynthesis are selected for cell-free expression. These enzymes can be expressed in single, in pairs, or in trios to synthesize different compounds, including, for instance, 4-Cl-l-lysine, 4-Cl-allyl-l-glycine, and l-propargylglycine. The final product of γ-l-glutamyl-l-β-ethynylserine (a dipeptide with an alkyne group) can also be synthesized by cell-free expression of the full biosynthetic pathway (i.e., five enzymes). Our results demonstrate the flexibility of cell-free systems, enabling easy regulation and rational optimization for target compound formation. Overall, this work expands not only the type of enzymes (e.g., halogenase) but also the scope of natural products (e.g., terminal-alkyne amino acid) that can be rapidly produced in cell-free systems. With the development of cell-free biotechnology, we envision that cell-free strategies will create a new frontier for natural product biosynthesis.
Collapse
Affiliation(s)
- Yilin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Cell-free protein synthesis system for bioanalysis: Advances in methods and applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
12
|
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, Bahrke S, Danielczyk A, Wüstenhagen DA, Kubick S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int J Mol Sci 2022; 23:ijms232213697. [PMID: 36430170 PMCID: PMC9697001 DOI: 10.3390/ijms232213697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Collapse
Affiliation(s)
- Simon K. Krebs
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Marlitt Stech
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Felix Jorde
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Nathanaël Rakotoarinoro
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Franziska Ramm
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sophie Marinoff
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Sven Bahrke
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Doreen A. Wüstenhagen
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
13
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
14
|
A De Novo Optimized Cell-Free System for the Expression of Soluble and Active Human Tumor Necrosis Factor-Alpha. BIOLOGY 2022; 11:biology11020157. [PMID: 35205024 PMCID: PMC8868817 DOI: 10.3390/biology11020157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Simple Summary As a result of increasing demand for the pleiotropic cytokine TNF-α, recombinant human TNF-α protein with appropriate bioactivities was produced in several heterologous in vivo expression systems. While in vivo expression of this cytokine is laborious and lengthy, cell-free or in vitro expression system has the benefits of speed, simplicity, flexibility, focus of all the system energy on target protein synthesis alone, besides high soluble and functional protein yield. Therefore, we employed and optimized an E. coli-based cell-free system for the first time to express recombinant human TNF-α. Our findings revealed that cell-free expression system can be an alternative platform for producing soluble and functionally active recombinant TNF-α with a yield of 390 µg/mL in only 2 h at a temperature of 40 °C for further research and clinical trials. Abstract Cell-free (in vitro) expression is a robust alternative platform to the cell-based (in vivo) system for recombinant protein production. Tumor necrosis factor-alpha (TNF-α) is an effective pro-inflammatory cytokine with pleiotropic effects. The aim of the current study was de novo optimized expression of soluble and active human TNF-α by an in vitro method in an E. coli-based cell-free protein synthesis (CFPS) system and its biological activity evaluation. The codon-optimized synthetic human TNF-α gene was constructed by a two-step PCR, cloned into pET101/D-TOPO vector and then expressed by the E. coli CFPS system. Cell-free expression of the soluble protein was optimized using a response surface methodology (RSM). The anticancer activity of purified human TNF-α was assessed against three human cancer cell lines: Caco-2, HepG-2 and MCF-7. Data from RSM revealed that the lowest value (7.2 µg/mL) of cell-free production of recombinant human TNF-α (rhTNF-α) was obtained at a certain incubation time (6 h) and incubation temperature (20 °C), while the highest value (350 µg/mL) was recorded at 4 h and 35 °C. This rhTNF-α showed a significant anticancer potency. Our findings suggest a cell-free expression system as an alternative platform for producing soluble and functionally active recombinant TNF-α for further research and clinical trials.
Collapse
|
15
|
Mezhyrova J, Mörs K, Glaubitz C, Dötsch V, Bernhard F. Applications of Cell-Free Synthesized Membrane Protein Precipitates. Methods Mol Biol 2022; 2406:245-266. [PMID: 35089562 DOI: 10.1007/978-1-0716-1859-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-free protein expression systems are new core platforms for membrane protein synthesis. Expression in the presence of supplied artificial hydrophobic environments such as nanomembranes or micelles allows the co-translational solubilization and folding of membrane proteins. In the absence of hydrophobic compounds, the synthesized membrane proteins quantitatively precipitate, while frequently still retaining a significant part of folded structural elements. This so-called precipitate-forming cell-free (P-CF) expression mode is a very effective and reliable approach for numerous applications. Even from complex membrane proteins such as G-protein coupled receptors or large transporters, significant amounts of such precipitates can be synthesized within few hours. The precipitates can be solubilized in detergents or reconstituted into membranes for subsequent structural or functional analysis. Harsh denaturation and refolding procedures as known from the treatment of bacterial inclusion bodies are usually not required.This strategy is particularly interesting for applications requiring large amounts of membrane protein or fast access to a sample. It is further an excellent tool for the production of membrane protein antigens suitable for antibody generation. The purification of the precipitates in downstream processing is streamlined as only few proteins from the cell-free lysate may co-precipitate with the synthesized membrane protein. For most applications, a one-step affinity chromatography by taking advantage of small purification tags attached to the membrane protein target is sufficient. We give an overview on current applications of P-CF precipitates and describe the underlying techniques in detail. We furthermore provide protocols for the successful crystallization and NMR analysis of P-CF synthesized membrane proteins exemplified with the diacylglycerol kinase (DAGK). In addition, we describe the functional characterization of a P-CF synthesized large eukaryotic transporter.
Collapse
Affiliation(s)
- Julija Mezhyrova
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Karsten Mörs
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Clemens Glaubitz
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany.
| |
Collapse
|
16
|
Rashid MH. Full-length recombinant antibodies from Escherichia coli: production, characterization, effector function (Fc) engineering, and clinical evaluation. MAbs 2022; 14:2111748. [PMID: 36018829 PMCID: PMC9423848 DOI: 10.1080/19420862.2022.2111748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although several antibody fragments and antibody fragment-fusion proteins produced in Escherichia coli (E. coli) are approved as therapeutics for various human diseases, a full-length monoclonal or a bispecific antibody produced in E. coli has not yet been approved. The past decade witnessed substantial progress in expression of full-length antibodies in the E. coli cytoplasm and periplasm, as well as in cell-free expression systems. The equivalency of E. coli-produced aglycosylated antibodies and their mammalian cell-produced counterparts, with respect to biochemical and biophysical properties, including antigen binding, in vitro and in vivo serum stability, pharmacokinetics, and in vivo serum half-life, has been demonstrated. Extensive engineering of the Fc domain of aglycosylated antibodies enables recruitment of various effector functions, despite the lack of N-linked glycans. This review summarizes recent research, preclinical advancements, and clinical development of E. coli-produced aglycosylated therapeutic antibodies as monoclonal, bispecific, and antibody-drug conjugates for use in autoimmune, oncology, and immuno-oncology areas.Abbreviations: ADA Anti-drug antibody; ADCC Antibody-dependent cellular cytotoxicity; ADCP Antibody-dependent cellular phagocytosis; ADC Antibody-drug conjugate; aFc Aglycosylated Fc; AMD Age-related macular degeneration aTTP Acquired thrombotic thrombocytopenic purpura; BCMA B-cell maturation antigen; BLA Biologics license application; BsAb Bispecific antibody; C1q Complement protein C1q; CDC Complement-dependent cytotoxicity; CDCC Complement-dependent cellular cytotoxicity; CDCP Complement-dependent cellular phagocytosis; CEX Cation exchange chromatography; CFPS Cell-free protein expression; CHO Chinese Hamster Ovary; CH1-3 Constant heavy chain 1-3; CL Constant light chain; DLBCL Diffuse large B-cell lymphoma; DAR Drug antibody ratio; DC Dendritic cell; dsFv Disulfide-stabilized Fv; EU European Union; EGFR Epidermal growth factor receptor; E. coli Escherichia coli; EpCAM Epithelial cell adhesion molecule; Fab Fragment antigen binding; FACS Fluorescence activated cell sorting; Fc Fragment crystallizable; FcRn Neonatal Fc receptor; FcɣRs Fc gamma receptors; FDA Food and Drug Administration; FL-IgG Full-length immunoglobulin; Fv Fragment variable; FolRαa Folate receptor alpha; gFc Glycosylated Fc; GM-CSF Granulocyte macrophage-colony stimulating factor; GPx7 Human peroxidase 7; HCL Hairy cell leukemia; HIV Human immunodeficiency virusl; HER2 Human epidermal growth factor receptor 2; HGF Hepatocyte growth factor; HIC Hydrophobic interaction chromatography; HLA Human leukocyte antigen; IBs Inclusion bodies; IgG1-4 Immunoglobulin 1-4; IP Intraperitoneal; ITC Isothermal titration calorimetry; ITP Immune thrombocytopenia; IV Intravenous; kDa Kilodalton; KiH Knob-into-Hole; mAb Monoclonal antibody; MAC Membrane-attack complex; mCRC Metastatic colorectal cancer; MM Multipl myeloma; MOA Mechanism of action; MS Mass spectrometry; MUC1 Mucin 1; MG Myasthenia gravis; NB Nanobody; NK Natural killer; nsAA Nonstandard amino acid; NSCLC Non-small cell lung cancer; P. aeruginosa Pseudomonas aeruginosa; PD-1 Programmed cell death 1; PD-L1 Programmed cell death-ligand 1; PDI Protein disulfide isomerase; PECS Periplasmic expression cytometric screening; PK Pharmacokinetics; P. pastoris Pichia pastoris; PTM Post-translational modification; Rg Radius of gyration; RA Rheumatoid arthritis; RT-PCR Reverse transcription polymerase chain reaction; SAXS Small angle X-ray scattering; scF Single chain Fv; SCLC Small cell lung cancer; SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEC Size exclusion chromatography; SEED Strand-exchange engineered domain; sRNA Small regulatory RNA; SRP Signal recognition particle; T1/2 Half-life; Tagg Aggregation temperature; TCR T cell receptor; TDB T cell-dependent bispecific; TF Tissue factor; TIR Translation initiation region; Tm Melting temperature; TNBC Triple-negative breast cancer; TNF Tumor necrosis factor; TPO Thrombopoietin; VEGF Vascular endothelial growth factor; vH Variable heavy chain; vL Variable light chain; vWF von Willebrand factor; WT Wild type.
Collapse
|
17
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
18
|
Huleani S, Roberts MR, Beales L, Papaioannou EH. Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression. Crit Rev Biotechnol 2021; 42:756-773. [PMID: 34470557 DOI: 10.1080/07388551.2021.1967871] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review article concerns the production of recombinant antibody fragments for applications mainly in the diagnostic sector. The so-called "point of care diagnostics" is very important for timely diagnosis and treatment, thus being able to save lives and resources. There is intense pressure for more accurate and less expensive rapid diagnostic tests, with a value preferably <$1. Thus, the large-scale cost-effective production of recombinant antibodies is vital. The importance of Escherichia coli toward the production of inexpensive rapid tests will be explained in this review paper. Details about the different strains of E. coli, the strategies used for the insertion and the expression of recombinant proteins, and the challenges that still exist are provided. Afterward, the importance of the expression scale and culture parameters in the final yield of the antibodies are examined. From this analysis, it appears that for good yields of recombinant antibodies, aside from appropriate gene transfer and expression, the culturing parameters are of paramount importance. Larger scale production is more favorable, mainly due to the higher cell densities that can be achieved. Yields of functional Fab fragments in the range of 10-20 mg/L are considered good in shake flasks, whereas in bioreactors can be up to 1-2 g/L. An amount of 10-500 mg of such antibody per million rapid tests is required. Despite the substantial importance of the production of the antibodies and their fragments, their downstream processing should be appropriately considered from the beginning for achieving the target value of the final rapid diagnostic tests.
Collapse
Affiliation(s)
- Sergiu Huleani
- Engineering Building, Lancaster University, Lancaster, UK
| | | | | | | |
Collapse
|
19
|
Chen X, Lu Y. In silico Design of Linear DNA for Robust Cell-Free Gene Expression. Front Bioeng Biotechnol 2021; 9:670341. [PMID: 34095101 PMCID: PMC8169995 DOI: 10.3389/fbioe.2021.670341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Cell-free gene expression systems with linear DNA expression templates (LDETs) have been widely applied in artificial cells, biochips, and high-throughput screening. However, due to the degradation caused by native nucleases in cell extracts, the transcription with linear DNA templates is weak, thereby resulting in low protein expression level, which greatly limits the development of cell-free systems using linear DNA templates. In this study, the protective sequences for stabilizing linear DNA and the transcribed mRNAs were rationally designed according to nucleases' action mechanism, whose effectiveness was evaluated through computer simulation and cell-free gene expression. The cell-free experiment results indicated that, with the combined protection of designed sequence and GamS protein, the protein expression of LDET-based cell-free systems could reach the same level as plasmid-based cell-free systems. This study would potentially promote the development of the LDET-based cell-free gene expression system for broader applications.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Toh YH, Huang YW, Chang YC, Chen YT, Hsu YT, Lin GH. Reactivity of human antisera to codon optimized SARS-CoV2 viral proteins expressed in Escherichia coli. Tzu Chi Med J 2021; 33:146-153. [PMID: 33912411 PMCID: PMC8059472 DOI: 10.4103/tcmj.tcmj_189_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/04/2022] Open
Abstract
Objective The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV2 virus continues to pose a serious threat to public health worldwide. The development of rapid diagnostic kits can assist the Tzu Chi Foundation in supporting global volunteers working to provide relief during the current pandemic. Materials and Methods In this study, nucleotide sequences derived from publicly available viral genome data for several domains of the SARS-CoV2 spike and nucleocapsid (N) proteins were chemically synthesized, with codon optimization for Escherichia coli protein expression. No actual viral particles were involved in these experiments. The synthesized sequences were cloned into an E. coli expression system based on pQE80L, and expressed viral proteins were subsequently purified using Ni-affinity chromatography. Western blotting was conducted using human antiviral sera to assess the response of codon-modified viral proteins to COVID-19 patient sera. Results N protein was expressed in amounts large enough to support large-scale production. The N-terminal domain, receptor-binding domain (RBD), Region 3, and the S2 domain were expressed in small but sufficient amounts for experiments. Immunoblotting results showed that anti-N IgG and anti-N IgM antibodies were detected in most patient sera, but only 60% of samples reacted with the recombinant RBD and S2 domain expressed by E. coli. Conclusion The results indicated that codon-optimized SARS-CoV2 viral proteins can be expressed in E. coli and purified for rapid antibody detection kit preparation, with the codon-optimized N protein, RBD, and S2 protein demonstrating the most potential.
Collapse
Affiliation(s)
- Yee-Huan Toh
- Department of Life Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Weng Huang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yo-Chen Chang
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Ting Chen
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Hsu
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Guang-Huey Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,International College, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
21
|
Cho J, Park J, Kim EE, Song EJ. Assay Systems for Profiling Deubiquitinating Activity. Int J Mol Sci 2020; 21:E5638. [PMID: 32781716 PMCID: PMC7460613 DOI: 10.3390/ijms21165638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein-protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.
Collapse
Affiliation(s)
- Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (E.E.K.)
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (E.E.K.)
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|