1
|
Sun CY, Cao D, Wang YN, Weng NQ, Ren QN, Wang SC, Zhang MY, Mai SJ, Wang HY. Cholesterol inhibition enhances antitumor response of gilteritinib in lung cancer cells. Cell Death Dis 2024; 15:704. [PMID: 39349433 PMCID: PMC11443066 DOI: 10.1038/s41419-024-07082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Repositioning approved antitumor drugs for different cancers is a cost-effective approach. Gilteritinib was FDA-approved for the treatment of FLT3-mutated acute myeloid leukemia in 2018. However, the therapeutic effects and mechanism of Gilteritinib on other malignancies remain to be defined. In this study, we identified that gilteritinib has an inhibitory effect on lung cancer cells (LCCs) without FLT3 mutation in vitro and in vivo. Unexpectedly, we found that gilteritinib induces cholesterol accumulation in LCCs via upregulating cholesterol biosynthetic genes and inhibiting cholesterol efflux. This gilteritinib-induced cholesterol accumulation not only attenuates the antitumor effect of gilteritinib but also induces gilteritinib-resistance in LCCs. However, when cholesterol synthesis was prevented by squalene epoxidase (SQLE) inhibitor NB-598, both LCCs and gilteritinib-resistant LCCs became sensitive to gilteritinib. More importantly, the natural cholesterol inhibitor 25-hydroxycholesterol (25HC) can suppress cholesterol biosynthesis and increase cholesterol efflux in LCCs. Consequently, 25HC treatment significantly increases the cytotoxicity of gilteritinib on LCCs, which can be rescued by the addition of exogenous cholesterol. In a xenograft model, the combination of gilteritinib and 25HC showed significantly better efficacy than either monotherapy in suppressing lung cancer growth, without obvious general toxicity. Thus, our findings identify an increase in cholesterol induced by gilteritinib as a mechanism for LCC survival, and highlight the potential of combining gilteritinib with cholesterol-lowering drugs to treat lung cancer.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yue-Ning Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Nuo-Qing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Qian-Nan Ren
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
2
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
3
|
Xiang C, Gao L, Tao Q, Chen Z, Zhao S, Liu W. TET2 regulates extranodal NK/T cell lymphoma progression through regulation of DNA methylation. Hematol Oncol 2024; 42:e3295. [PMID: 38979860 DOI: 10.1002/hon.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The biological role of Ten-11 translocation 2 (TET2) and the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the development of extra-nodal natural killer/T-cell lymphoma (ENKTL) remains unclear. The level of 5mC and 5hmC was detected in 112 cases of ENKTL tissue specimens by immunohistochemical (IHC) staining. Subsequently, TET2 knockdown and the overexpression cell models were constructed in ENKTL cell lines. Biochemical analyses were used to assess proliferation, apoptosis, cell cycle and monoclonal formation in cells treated or untreated with L-Ascorbic acid sodium salt (LAASS). Dot-Blots were used to detect levels of genome 5mC and 5hmC. Additionally, the ILLUMINA 850k methylation chip was used to analyze the changes of TET2 regulatory genes. RNA-Seq was used to profile differentially expressed genes regulated by TET2. The global level of 5hmC was significantly decreased, while 5mC was highly expressed in ENKTL tissue. TET2 protein expression was negatively correlated with the ratio of 5mC/5hmC (p < 0.0001). The 5mC/5hmC status were related to the site of disease, clinical stage, PINK score and Ki-67 index, as well as the 5-year OS. TET2 knockdown prolonged the DNA synthesis period, increased the cloning ability of tumor cells, increased the level of 5mC and decreased the level of 5hmC in ENKTL cells. While overexpression of TET2 presented the opposite effect. Furthermore, treatment of ENKTL cells with LAASS significantly induced ENKTL cell apoptosis. These results suggest that TET2 plays an important role in ENKTL development via regulation of 5mC and 5hmC and may serve as a novel therapeutic target for ENKTL.
Collapse
Affiliation(s)
- Chunxiang Xiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Tao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Hong Z, Tongsong Z, Cunhai C, Xiao L, Haiping S. Case report of multiple primary cancers and results of genetic testing to preliminarily explore their pathogenesis. SAGE Open Med Case Rep 2024; 12:2050313X241252371. [PMID: 38803359 PMCID: PMC11129569 DOI: 10.1177/2050313x241252371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The occurrence of multiple primary malignancies in a single patient has been relatively rare. We report here the case of a 71-year-old man with three primary tumors of lung cancer, intrahepatic cholangiocarcinoma, and prostate cancer, and a preliminary study of the mechanisms by which multiple primary tumors develop at the genetic level. Because of the late stage of the patient's condition, large tumor burden, and poor physical status, the patient survived only a few months. In the case presented herein, cholangiocarcinoma, lung cancer, and prostate cancer were found simultaneously, and the pathogenic sites are not related. Whole-exome sequencing was performed on the pathological tissues to explore the mechanism that may underlie multiple primary cancers at the genetic level. Several gene mutations were found in this case. They involved cell proliferation, cell cycle regulation, genetic stability, metabolism, cell invasion, angiogenesis, cell apoptosis, and other pathways. It can be preliminarily inferred that the mechanism underlying multiple primary tumors is related to the abnormality of tumor-promoting and suppressing pathways.
Collapse
Affiliation(s)
- Zhao Hong
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
| | - Zhang Tongsong
- Department of Radiotherapy, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Chen Cunhai
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| | - Li Xiao
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| | - Song Haiping
- Department of Internal Medicine-Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences Qingdao Central Hospital, Qingdao, China
- Department of Internal Medicine-Oncology, Qingdao Tumor Hospital, Qingdao, China
| |
Collapse
|
5
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
6
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
7
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
8
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
10
|
Wang T, Zhang X, Wang Y, Liu W, Wang L, Hao L, Ju M, Xiao R. High cholesterol and 27-hydroxycholesterol contribute to phosphorylation of tau protein by impairing autophagy causing learning and memory impairment in C57BL/6J mice. J Nutr Biochem 2022; 106:109016. [DOI: 10.1016/j.jnutbio.2022.109016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
11
|
Xu L, Huang X, Lou Y, Xie W, Zhao H. Regulation of apoptosis, autophagy and ferroptosis by non‑coding RNAs in metastatic non‑small cell lung cancer (Review). Exp Ther Med 2022; 23:352. [PMID: 35493430 PMCID: PMC9019694 DOI: 10.3892/etm.2022.11279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), a common type of cancer worldwide, is normally associated with a poor prognosis. It is difficult to treat successfully as it often metastasizes into brain or bone. Methods to facilitate the induction of effective programmed cell death (PCD) in NSCLC cells to reverse drug resistance, or to inhibit the invasion and migration of NSCLC cells, are currently under investigation. The present study summarized the regulatory functions of PCD, including apoptosis, autophagy and ferroptosis, in the context of NSCLC metastasis. It further summarized how regulatory agents, including long non-coding RNAs, circular RNAs and microRNAs, regulate PCD during the metastasis of NSCLC and characterized new potential diagnostic biomarkers of NSCLC metastasis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Xin Huang
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Yan Lou
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, P.R. China
| | - Wei Xie
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Hangyu Zhao
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| |
Collapse
|
12
|
Pan Z, Wang K, Wang X, Jia Z, Yang Y, Duan Y, Huang L, Wu ZX, Zhang JY, Ding X. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol Cancer 2022; 21:77. [PMID: 35303882 PMCID: PMC8932110 DOI: 10.1186/s12943-022-01547-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) brings remarkable benefits for the survival of patients with advanced NSCLC harboring EGFR mutations. Unfortunately, acquired resistance seems to be inevitable and limits the application of EGFR-TKIs in clinical practice. This study reported a common molecular mechanism sustaining resistance and potential treatment options to overcome EGFR-TKIs resistance. METHODS EGFR-TKIs resistant NSCLC cells were established and confirmed by MTT assay. Cholesterol content was detected and the promotional function of cholesterol on NSCLC growth was determined in vivo. Then, we identified ERRα expression as the downstream factor of cholesterol-mediated drug resistance. To dissect the regulatory mechanism, we conducted experiments, including immunofluorescence, co-immunoprecipitation, luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS Long-term exposure to EGFR-TKIs generate drug resistance with the characteristic of cholesterol accumulation in lipid rafts, which promotes EGFR and Src to interact and lead EGFR/Src/Erk signaling reactivation-mediated SP1 nuclear translocation and ERRα re-expression. Further investigation identifies ERRα as a target gene of SP1. Functionally, re-expression of ERRα sustains cell proliferation by regulating ROS detoxification process. Lovastatin, a drug used to decrease cholesterol level, and XCT790, an inverse agonist of ERRα, overcome gefitinib and osimertinib resistance both in vitro and in vivo. CONCLUSIONS Our study indicates that cholesterol/EGFR/Src/Erk/SP1 axis-induced ERRα re-expression promotes survival of gefitinib and osimertinib-resistant cancer cells. Besides, we demonstrate the potential of lowing cholesterol and downregulation of ERRα as effective adjuvant treatment of NSCLC.
Collapse
Affiliation(s)
- Zhenzhen Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Lianzhan Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Zhuo-Xun Wu
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
13
|
BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med 2021; 53:1877-1887. [PMID: 34876693 PMCID: PMC8741967 DOI: 10.1038/s12276-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022] Open
Abstract
BIX01294 (BIX), an inhibitor of the G9a histone methyltransferase, has been reported to have antitumor activity against a variety of cancers. However, the molecular mechanisms underlying its anticancer effects, particularly those against lung cancer, remain unclear. Here, we report that BIX induces apoptotic cell death in EGFR-mutant non-small cell lung cancer (NSCLC) cells but not in their wild-type counterparts. Treatment with BIX resulted in a significant reduction in the EGFR level and inhibition of EGFR signaling only in EGFR-mutant NSCLC cells, leading to apoptosis. BIX also inhibited mitochondrial metabolic function and decreased the cellular energy levels that are critical for maintaining the EGFR level. Furthermore, BIX transcriptionally downregulated the transcription of branched-chain α-keto acid dehydrogenase (BCKDHA), which is essential for fueling the tricarboxylic acid (TCA) cycle. Interestingly, this BCKDHA downregulation was due to inhibition of Jumanji-domain histone demethylases but not the G9a histone methyltransferase. We observed that KDM3A, a Jumonji histone demethylase, epigenetically regulates BCKDHA expression by binding to the BCKDHA gene promoter. BIX exposure also led to a significant decrease in the EGFR level, causing apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Taken together, our current data suggest that BIX triggers apoptosis only in EGFR-mutant NSCLC cells via inhibition of BCKDHA-mediated mitochondrial metabolic function. A drug known as BIX that is effective against bladder and breast cancers may also be effective in fighting non-small cell lung cancer (NSCLC). Although advances have been made in treatment of NSCLC, one of the most effective drugs targets a protein called EGFR, and EGFR gene mutations that lead to acquired drug resistance are common. Jaekyoung Son at the University of Ulsan, Seoul, South Korea, and colleagues investigated whether BIX is effective against NSCLC and attempted to elucidate its mechanism of action. The researchers found that BIX caused death of NSCLC cells, especially those with mutations in the EGFR gene. Further investigation showed that BIX was effective even against drug-resistant NSCLC cells, by acting via a different metabolic pathway. BIX shows promise as an alternative therapy for lung cancer, to overcome drug resistance.
Collapse
|
14
|
Colardo M, Martella N, Pensabene D, Siteni S, Di Bartolomeo S, Pallottini V, Segatto M. Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. Int J Mol Sci 2021; 22:5692. [PMID: 34073639 PMCID: PMC8198482 DOI: 10.3390/ijms22115692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Silvia Siteni
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| |
Collapse
|
15
|
Multiple Roles of 25-Hydroxycholesterol in Lipid Metabolism, Antivirus Process, Inflammatory Response, and Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8893305. [PMID: 33274010 PMCID: PMC7695496 DOI: 10.1155/2020/8893305] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC.
Collapse
|