1
|
Bradshaw TM, Schoenfisch MH. Properties of Electrospun Fibers That Influence Foreign Body Response Modulation. ACS Biomater Sci Eng 2024. [PMID: 39637403 DOI: 10.1021/acsbiomaterials.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Improving the utility of biomedical devices implanted in subcutaneous tissue by modulating the innate immune response common to these implants is of great interest to improve their utility. Uncontrolled, most biomedical devices produce an immune reaction known broadly as the foreign body response (FBR), which ultimately isolates the device from the native tissue. The use of electrospun fibers to create a porous surface that promotes tissue in-growth and regeneration represents a new paradigm in FBR modulation. A vast number of parameters can be adjusted in the electrospinning process to tune the type and quality of the resulting electrospun matrix, which in turn has varying outcomes with respect to the FBR. In this review, the fabrication and utility of electrospun fiber scaffolds for mitigating the FBR are described, with details of how fiber properties and surface modifications alter immune response for specific biomedical applications.
Collapse
Affiliation(s)
- Taron M Bradshaw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Chen B, Zhao X, Xu M, Luo J, Bai L, Han Q, Gao Y, Guo B, Yin Z. Inflammation-Responsive Functional Core-Shell Micro-Hydrogels Promote Rotator Cuff Tendon-To-Bone Healing by Recruiting MSCs and Immuno-Modulating Macrophages in Rats. Adv Healthc Mater 2024:e2404091. [PMID: 39526494 DOI: 10.1002/adhm.202404091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Rotator cuff injuries often necessitate surgical intervention, but the outcomes are often unsatisfactory. The underlying reasons can be attributed to multiple factors, with the intricate inflammatory activities and insufficient presence of stem cells being particularly significant. In this study, an innovative inflammation-responsive core-shell micro-hydrogel is designed for independent release of SDF-1 and IL-4 within a single delivery system to promote tendon-to-bone healing by recruiting MSCs and modulating M2 macrophages polarization. First, a MMP-2 responsive hydrogel loaded with IL-4 (GelMA-MMP/IL-4) is synthesized by cross-linking gelatin methacrylate (GelMA) with MMP-2 substrate peptide. Then, the resulting core particles are coated with a shell of chitosan /SDF-1/hyaluronic acid (CS/HA/SDF-1) using the layer-by-layer electrostatic deposition method to form a core-shell micro-hydrogel composite. The core-shell micro-hydrogel shows sustained release of SDF-1 and MMP-2-responsive release of IL-4 associated in situ MSCs homing and smart inflammation regulation by promoting M2 macrophages polarization. Additionally, by injecting these micro-hydrogels into a rat rotator cuff tear and repair model, notable improvements of fibrocartilage layer are observed between tendon and bone. Notably, this study presents a new and potentially powerful environment-responsive drug delivery strategy that offers valuable insights for regulating the intricate micro-environment associated with tissue regeneration.
Collapse
Affiliation(s)
- Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlong Luo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F, Bonaventura F, Mastrorilli V, Berardinelli P, Barboni B, Russo V. Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing. Vet Sci 2024; 11:441. [PMID: 39330820 PMCID: PMC11435825 DOI: 10.3390/vetsci11090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Unsuccessful tendon healing leads to fibrosis and occasionally calcification. In these metaplastic drifts, the mouse AT preclinical injury model represents a robust experimental setting for studying tendon calcifications. Previously, calcium deposits were found in about 30% of tendons after 28 days post-injury. Although a neuromediated healing process has previously been documented, the expression patterns of NF200, NGF, NPY, GAL, and CGRP in mouse AT and their roles in metaplastic calcific repair remain to be explored. This study included a spatiotemporal analysis of these neuromarkers during the inflammatory phase (7 days p.i.) and the proliferative/early-remodelling phase (28 days p.i.). While the inflammatory phase is characterised by NF200 and CGRP upregulation, in the 28 days p.i., the non-calcified tendons (n = 16/24) showed overall NGF, NPY, GAL, and CGRP upregulation (compared to 7 days post-injury) and a return of NF200 expression to values similar to pre-injury. Presenting a different picture, in calcified tendons (n = 8), NF200 persisted at high levels, while NGF and NPY significantly increased, resulting in a higher NPY/CGRP ratio. Therefore, high levels of NF200 and imbalance between vasoconstrictive (NPY) and vasodilatory (CGRP) neuromarkers may be indicative of calcification. Tendon cells contributed to the synthesis of neuromarkers, suggesting that their neuro-autocrine/paracrine role is exerted by coordinating growth factors, cytokines, and neuropeptides. These findings offer insights into the neurobiological mechanisms of early tendon healing and identify new neuromarker profiles predictive of tendon healing outcomes.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valeria Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Dong Y, Li J, Jiang Q, He S, Wang B, Yi Q, Cheng X, Gao X, Bai Y. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat 2024; 48:70-88. [PMID: 39185339 PMCID: PMC11342074 DOI: 10.1016/j.jot.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Background Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. Methods: The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatinmp to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment. Results The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance. Conclusion The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon. The translational potential of this article The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.
Collapse
Affiliation(s)
- YuHan Dong
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - JiangFeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - SiRong He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - QiYing Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - XiTing Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Liang C, Fan Z, Zhang Z, Wang P, Deng H, Tao J. Electrospinning technology: a promising approach for tendon-bone interface tissue engineering. RSC Adv 2024; 14:26077-26090. [PMID: 39161449 PMCID: PMC11332360 DOI: 10.1039/d4ra04043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
The regeneration of tendon-bone interface tissue has become a topic of great interest in recent years. However, the complex nature of this interface has posed challenges in finding suitable solutions. Tissue engineering, with its potential to improve clinical outcomes and play a crucial role in musculoskeletal function, has been increasingly explored for tendon-bone interface regeneration. This review focuses on the research advancements of electrospinning technology in interface tissue engineering. By utilizing electrospinning, researchers have been able to fabricate scaffolds with tailored properties to promote the regeneration and integration of tendon and bone tissues. The review discusses the unique structure and function of the tendon-bone interface, the mechanisms involved in its healing, and the limitations currently faced in achieving successful regeneration. Additionally, it highlights the potential of electrospinning technology in scaffold fabrication and its role in facilitating the development of functional and integrated tendon-bone interface tissues. Overall, this review provides valuable insights into the application of electrospinning technology for tendon-bone interface tissue engineering, emphasizing its significance in addressing the challenges associated with regeneration in this complex interface.
Collapse
Affiliation(s)
- Chengzhi Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zaiwei Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Zirui Zhang
- Department of Rehabilitation Medicine, The 960th Hospital of the Chinese People's Liberation Army Jinan 250000 China
| | - Pinkai Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Hui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Jun Tao
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| |
Collapse
|
6
|
Chen R, Chen F, Chen K, Xu J. Advances in the application of hydrogel-based scaffolds for tendon repair. Genes Dis 2024; 11:101019. [PMID: 38560496 PMCID: PMC10978548 DOI: 10.1016/j.gendis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
Tendon injuries often lead to joint dysfunction due to the limited self-regeneration capacity of tendons. Repairing tendons is a major challenge for surgeons and imposes a significant financial burden on society. Therefore, there is an urgent need to develop effective strategies for repairing injured tendons. Tendon tissue engineering using hydrogels has emerged as a promising approach that has attracted considerable interest. Hydrogels possess excellent biocompatibility and biodegradability, enabling them to create an extracellular matrix-like growth environment for cells. They can also serve as a carrier for cells or other substances to accelerate tendon repair. In the past decade, numerous studies have made significant progress in the preparation of hydrogel scaffolds for tendon healing. This review aims to provide an overview of recent research on the materials of hydrogel-based scaffolds used for tendon tissue engineering and discusses the delivery systems based on them.
Collapse
Affiliation(s)
- Renqiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Fanglin Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Kenian Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
8
|
Li H, Luo S, Li H, Pan H, Jiang L, Chen Y, Chen H, Feng Z, Li S. From fetal tendon regeneration to adult therapeutic modalities: TGF-β3 in scarless healing. Regen Med 2023; 18:809-822. [PMID: 37671630 DOI: 10.2217/rme-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Tendon injuries are common disorders that can significantly impact people's lives. Unfortunately, the limited regenerative ability of tendons results in tissue healing in a scar-mediated manner. The current therapeutic strategies fail to fully recover the functions of the injured tendons, and as such, the conception of 'scarless healing' has gained prominent attention in the field of regenerative medicine. Interestingly, injured fetal tendons possess the capability to heal through regeneration, which builds an ideal blueprint for adult tendon regeneration. Studies have shown that fetal biochemical cues have the potential to improve adult tendon healing. Here we review the biological factors that contribute to fetal tendon regeneration and how manipulation of these biochemical cues in the adult tendon healing process could achieve regeneration.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
尹 正, 陈 志, 尹 妮, 朱 弈, 张 必, 周 田, 谭 洪, 徐 永. [Progress and prospect of biological treatment for rotator cuff injury repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1169-1176. [PMID: 37718433 PMCID: PMC10505641 DOI: 10.7507/1002-1892.202303122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Indexed: 09/19/2023]
Abstract
Objective To review the research progress in biotherapy of rotator cuff injury in recent years, in order to provide help for clinical decision-making of rotator cuff injury treatment. Methods The literature related to biotherapy of rotator cuff injury at home and abroad in recent years was widely reviewed, and the mechanism and efficacy of biotherapy for rotator cuff injury were summarized from the aspects of platelet-rich plasma (PRP), growth factors, stem cells, and exosomes. Results In order to relieve patients' pain, improve upper limb function, and improve quality of life, the treatment of rotator cuff injury experienced an important change from conservative treatment to open surgery to arthroscopic rotator cuff repair. Arthroscopic rotator cuff repair plus a variety of biotherapy methods have become the mainstream of clinical treatment. All kinds of biotherapy methods have ideal mid- and long-term effectiveness in the repair of rotator cuff injury. The biotherapy method to promote the healing of rotator cuff injury is controversial and needs to be further studied. Conclusion All kinds of biotherapy methods show a good effect on the repair of rotator cuff injury. It will be an important research direction to further develop new biotherapy technology and verify its effectiveness.
Collapse
Affiliation(s)
- 正勃 尹
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 志安 陈
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 妮 尹
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 弈霏 朱
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 必欢 张
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 田华 周
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 洪波 谭
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| | - 永清 徐
- 昆明医科大学研究生院(昆明 650500)Graduate School of Kunming Medical University, Kunming Yunnan, 650500, P. R. China
| |
Collapse
|
10
|
Mandalia K, Mousad A, Welborn B, Bono O, Le Breton S, MacAskill M, Forlizzi J, Ives K, Ross G, Shah S. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg 2023; 32:1784-1800. [PMID: 37178960 DOI: 10.1016/j.jse.2023.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite advancements in the surgical techniques of rotator cuff repair (RCR), there remains a high retear rate. Biological augmentation of repairs with overlaying grafts and scaffolds may enhance healing and strengthen the repair construct. This study aimed to investigate the efficacy and safety of scaffold-based (nonstructural) and overlay graft-based (structural) biological augmentation in RCR (excluding superior capsule reconstruction and bridging techniques) in both preclinical and clinical studies. METHODS This systematic review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, as well as guidelines outlined by The Cochrane Collaboration. A search of the PubMed, Embase, and Cochrane Library databases from 2010 until 2022 was conducted to identify studies reporting the clinical, functional, and/or patient-reported outcomes of ≥1 biological augmentation method in either animal models or humans. The methodologic quality of included primary studies was appraised using the Checklist to Evaluate a Report of a Non-pharmacological Trial (CLEAR-NPT) for randomized controlled trials and using the Methodological Index for Non-randomized Studies (MINORS) for nonrandomized studies. RESULTS A total of 62 studies (Level I-IV evidence) were included, comprising 47 studies reporting outcomes in animal models and 15 clinical studies. Of the 47 animal-model studies, 41 (87.2%) demonstrated biomechanical and histologic enhancement with improved RCR load to failure, stiffness, and strength. Of the 15 clinical studies, 10 (66.7%) illustrated improvement in postoperative clinical, functional, and patient-reported outcomes (eg, retear rate, radiographic thickness and footprint, and patient functional scores). No study reported a significant detriment to repair with augmentation, and all studies endorsed low complication rates. A meta-analysis of pooled retear rates demonstrated significantly lower odds of retear after treatment with biological augmentation of RCR compared with treatment with non-augmented RCR (odds ratio, 0.28; P < .00001), with low heterogeneity (I2 = 0.11). CONCLUSIONS Graft and scaffold augmentations have shown favorable results in both preclinical and clinical studies. Of the investigated clinical grafts and scaffolds, acellular human dermal allograft and bovine collagen demonstrate the most promising preliminary evidence in the graft and scaffold categories, respectively. With a low risk of bias, meta-analysis revealed that biological augmentation significantly lowered the odds of retear. Although further investigation is warranted, these findings suggest graft and scaffold biological augmentation of RCR to be safe.
Collapse
Affiliation(s)
- Krishna Mandalia
- Tufts University School of Medicine, Boston, MA, USA; New England Shoulder and Elbow Center, Boston, MA, USA.
| | - Albert Mousad
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Glen Ross
- New England Baptist Hospital, Boston, MA, USA
| | - Sarav Shah
- New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Ren Y, Chen Y, Chen W, Deng H, Li P, Liu Y, Gao C, Tian G, Ning C, Yuan Z, Sui X, Liu S, Guo Q. Hydrophilic nanofibers with aligned topography modulate macrophage-mediated host responses via the NLRP3 inflammasome. J Nanobiotechnology 2023; 21:269. [PMID: 37574546 PMCID: PMC10424429 DOI: 10.1186/s12951-023-02024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.
Collapse
Affiliation(s)
- Yiming Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Wei Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Haotian Deng
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Peiqi Li
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yubo Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chao Ning
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhiguo Yuan
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Institute of Orthopedics, First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
12
|
Li D, Wang G, Li J, Yan L, Liu H, Jiu J, Li X, Li JJ, Wang B. Biomaterials for Tissue-Engineered Treatment of Tendinopathy in Animal Models: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:387-413. [PMID: 36792921 DOI: 10.1089/ten.teb.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To conduct a systematic review of studies reporting the treatment of tendon injury using biomaterials in animal models. A systematic search was conducted to retrieve studies involving animal models of tendon repair using biomaterials, in PubMed (database construction to August 2022) and Ovid-Embase (1946 to August 2022). Data related to tendon repair with biomaterials were extracted by two researchers, respectively. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. A statistical analysis was performed based on the classification of tendon repair biomaterials included in our study. A total of 8413 articles were retrieved, with 78 studies included in our analysis. For tendon repair in animal models using biomaterials, the most commonly seen characteristics were as follows: naturally derived biomaterials, rabbits and rats as animal models, surgery as the injury model, and the Achilles tendon as the injury site. The histology and biomechanical recovery of tendon injury following repair are affected by different biomaterials. Studies of tendon repair in animal models indicate that biomaterials can significantly improve repair outcomes, including tendon structure and biomechanics. Among effective biomaterial strategies are the use of new composites and incorporation of cells or growth factors into the material, both of which provide obvious benefits for tendon healing. More high-quality preclinical studies are required to encourage the translation of biomaterials into clinical practice for tendon repair.
Collapse
Affiliation(s)
- Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
13
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
14
|
Kokozidou M, Gögele C, Pirrung F, Hammer N, Werner C, Kohl B, Hahn J, Breier A, Schröpfer M, Meyer M, Schulze-Tanzil G. In vivo ligamentogenesis in embroidered poly(lactic-co-ε-caprolactone) / polylactic acid scaffolds functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams. Histochem Cell Biol 2023; 159:275-292. [PMID: 36309635 PMCID: PMC10006054 DOI: 10.1007/s00418-022-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or F combined with the foam (F + coll). Cell-free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, cell vitality and content, histo(patho)logy of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.Scaffolds did not affect mice weight development and organs, indicating no organ toxicity. Moreover, scaffolds maintained their size and shape and reflected a high cell viability prior to and following implantation. Coll or F + coll scaffolds seeded with cells yielded superior macroscopic properties compared to the controls. Mild signs of inflammation (foreign-body giant cells and hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable after explantation, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in explanted scaffolds compared to those before implantation, with no significant differences between scaffold subtypes, except for a higher maximum force in F + coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. a Lapine anterior cruciate ligament (LACL): red arrow, posterior cruciate ligament: yellow arrow. Medial anterior meniscotibial ligament: black arrow. b Explant culture to isolate LACL fibroblasts. c Scaffold variants: co: controls; F: functionalization by gas-phase fluorination; coll: collagen foam cross-linked with hexamethylene diisocyanate (HMDI). c1-2 Embroidery pattern of the scaffolds. d Scaffolds were seeded with LACL fibroblasts using a dynamical culturing approach as depicted. e Scaffolds were implanted subnuchally into nude mice, fixed at the nuchal ligament and sacrospinal muscle tendons. f Two weeks after implantation. g Summary of analyses performed. Scale bars 1 cm (b, d), 0.5 cm (c). (sketches drawn by G.S.-T. using Krita 4.1.7 [Krita foundation, The Netherlands]).
Collapse
Affiliation(s)
- Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Felix Pirrung
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187, Dresden, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Judith Hahn
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Annette Breier
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.
| |
Collapse
|
15
|
Bono OJ, Jenkin B, Forlizzi J, Mousad A, Le Breton S, MacAskill M, Mandalia K, Mithoefer K, Ramappa A, Ross G, Shah SS. Evidence for Utilization of Injectable Biologic Augmentation in Primary Rotator Cuff Repair: A Systematic Review of Data From 2010 to 2022. Orthop J Sports Med 2023; 11:23259671221150037. [PMID: 36756167 PMCID: PMC9900676 DOI: 10.1177/23259671221150037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 02/05/2023] Open
Abstract
Background Biologic healing after rotator cuff repair remains a significant challenge. Injectable biologic augmentation may improve tissue quality at the suture-tendon interface. Purpose To investigate the effect of injectable biologic supplementation in rotator cuff repair and to assess the quality and adherence to evolving reporting standards. Study Design Systematic review; Level of evidence, 3. Methods A systematic review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Included were 40 studies: 29 preclinical (in vivo animal models) and 11 clinical. Each clinical study was assessed for quality, risk of bias, and adherence to relevant MIBO (Minimum Information for Studies Evaluating Biologics in Orthopaedics) guidelines. The outcomes of interest were reported load to failure, load to gap, gap size, and stiffness in the preclinical studies, and healing rate and any patient-reported outcome measures in the clinical studies. Results Injectables reported included growth factors (eg, transforming growth factor-beta 3, erythropoietin), bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells (ADSCs), and other agents such as platelet-rich plasma (PRP) and hyaluronic acid. The most common findings for preclinical injectables were increased load to failure (16/29 studies; 55.2%) and improved collagen histological quality (11/29 studies; 37.9%). All 11 clinical studies (10 PRP, 1 ADSC) indicated no adverse events, with similar or improved patient-reported outcomes compared with repairs in the control groups. In 1 study utilizing an innovative delivery technique, a concentrated PRP globule with fibrin matrix was shuttled over a suture to maintain concentrated PRP at the repair site and demonstrated a significant decrease in retears (P = .03) at a 31-month follow-up. A matched-cohort study investigating augmentation with ADSCs demonstrated a significantly lower retear rate in the ADSC-augmented group than the control group at a 28-month follow-up (P < .001). On average, the clinical studies adhered to 66% of relevant MIBO reporting guidelines and had a low risk of bias. Conclusion Approximately 83% of preclinical studies found a positive biomechanical or histological effect, with no studies showing an overall negative effect. Clinically, utilization of innovative delivery techniques may reduce the risk of arthroscopic washout of PRP and improve retear rates. ADSCs were shown to reduce retear rates at a 28-month follow-up.
Collapse
Affiliation(s)
- Olivia J. Bono
- Albany Medical College, Albany, New York, USA.,Olivia J. Bono, BA, Albany Medical College, 49 New Scotland
Avenue, Albany, NY 12208, USA (
)
| | - Bryan Jenkin
- Tufts University School of Medicine, Boston, Massachusetts,
USA
| | | | - Albert Mousad
- Tufts University School of Medicine, Boston, Massachusetts,
USA
| | | | | | | | - Kai Mithoefer
- New England Baptist Hospital, Boston, Massachusetts, USA
| | - Arun Ramappa
- Beth Israel Deaconess Medical Center, Boston, Massachusetts,
USA
| | - Glen Ross
- New England Baptist Hospital, Boston, Massachusetts, USA
| | - Sarav S. Shah
- New England Baptist Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Rocha J, Araújo JC, Fangueiro R, Ferreira DP. Wetspun Polymeric Fibrous Systems as Potential Scaffolds for Tendon and Ligament Repair, Healing and Regeneration. Pharmaceutics 2022; 14:2526. [PMID: 36432717 PMCID: PMC9699541 DOI: 10.3390/pharmaceutics14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tendon and ligament traumatic injuries are among the most common diagnosed musculoskeletal problems. Such injuries limit joint mobility, reduce musculoskeletal performance, and most importantly, lower people's comfort. Currently, there are various treatments that are used to treat this type of injury, from surgical to conservative treatments. However, they're not entirely effective, as reinjures are frequent and, in some cases, fail to re-establish the lost functionality. Tissue engineering (TE) approaches aim to overcome these disadvantages by stimulating the regeneration and formation of artificial structures that resemble the original tissue. Fabrication and design of artificial fibrous scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of the tissues. Recently, polymeric nanofibers produced by wetspinning have been largely investigated to mimic, repair, and replace the damaged tissue. Wetspun fibrous structures are extensively used due to their exceptional properties, such as the ability to mimic the native tissue, their biodegradability and biocompatibility, and good mechanical properties. In this review, the tendon and ligament structure and biomechanics are presented. Then, promising wetspun multifunctional fibrous structures based on biopolymers, more specifically polyhydroxyalkanoates (PHA), polycaprolactone (PCL), and polyethylenes, will be discussed, as well as reinforcing agents such as cellulose nanocrystals (CNC), nanoparticles, and growth factors.
Collapse
Affiliation(s)
- Joana Rocha
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Joana C Araújo
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| |
Collapse
|
17
|
Han J, Rhee SM, Kim YW, Park SH, Oh JH. Three-dimensionally printed recombinant human parathyroid hormone-soaked nanofiber sheet accelerates tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1628-1639. [PMID: 35337954 DOI: 10.1016/j.jse.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human parathyroid hormone (rhPTH) promotes tendon-to-bone healing in humans and animals with rotator cuff tear (RCT). However, problems regarding repeated systemic rhPTH injections in humans exist. This study was conducted to evaluate the effect of topical rhPTH administration using 3-dimensionally (3D) printed nanofiber sheets on tendon-to-bone healing in a rabbit RCT model compared to that of direct topical rhPTH administration. METHODS Eighty rabbits were randomly assigned to 5 groups (n = 16 each). To create the chronic RCT model, we induced complete supraspinatus tendon tears in both shoulders and left them untreated for 6 weeks. All transected tendons were repaired in a transosseous manner with saline injection in group A, hyaluronic acid (HA) injection in group B, 3D-printed nanofiber sheet fixation in group C, rhPTH and HA injection in group D, and 3D-printed rhPTH- and HA-soaked nanofiber sheet fixation in group E. Genetic (messenger RNA expression evaluation) and histologic evaluations (hematoxylin and eosin and Masson trichrome staining) were performed in half of the rabbits at 4 weeks postrepair. Genetic, histologic, and biomechanical evaluations (mode of tear and load to failure) were performed in the remaining rabbits at 12 weeks. RESULTS For genetic evaluation, group E showed a higher collagen type I alpha 1 expression level than did the other groups (P = .008) at 4 weeks. However, its expression level was downregulated, and there was no difference at 12 weeks. For histologic evaluation, group E showed greater collagen fiber continuity, denser collagen fibers, and more mature tendon-to-bone junction than did the other groups (P = .001, P = .001, and P = .003, respectively) at 12 weeks. For biomechanical evaluation, group E showed a higher load-to-failure rate than did the other groups (P < .001) at 12 weeks. CONCLUSION Three-dimensionally printed rhPTH-soaked nanofiber sheet fixation can promote tendon-to-bone healing of chronic RCT.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Sung Min Rhee
- Department of Orthopaedic Surgery, KyungHee University Medical Center, Seoul, Republic of Korea
| | - Young Won Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Republic of Korea.
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Republic of Korea.
| |
Collapse
|
18
|
Wang Z, Xiang L, Lin F, Tang Y, Deng L, Cui W. A Biomaterial-Based Hedging Immune Strategy for Scarless Tendon Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200789. [PMID: 35267215 DOI: 10.1002/adma.202200789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Scarring rather than regeneration, is an inevitable outcome of unbalanced amplifications of inflammation-destructive signals and atresia of the regenerative niche. However, identifying and effectively hedging against the risk of scarring and realizing the conversion of regenerative cues remain difficult. In this work, a hedging immune strategy based microfibrous membrane (Him-MFM), by tethering distearoyl phosphoethanolamine layer-supported copoly(lactic/glycolic acid) electrospun fibers with identified CD11b+ /CD68+ scarring subpopulation membranes in the immune landscape after tendon injury to counterweigh tissue damage, is reported. Him-MFM, carrying relevant risk receptors is shown to shift high type I biased polarization, alleviate apoptosis and metabolic stress, and mitigate inflammatory tenocyte response. Remarkably, the hedging immune strategy reverses the damaged tendon sheath barrier to the innate IL-33 secretory phenotype by 4.36 times and initiates the mucous-IL-33-Th2 axis, directly supplying a transient but obligate regenerative niche for sheath stem cell proliferation. In murine flexor tendon injury, the wrapping of Him-MFM alleviates pathological responses, protects tenocytes in situ, and restores hierarchically arranged collagen fibers covered with basement membrane, and is structurally and functionally comparable to mature tendons, demonstrating that the hedging immunity is a promising strategy to yield regenerative responses not scarring.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
19
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
20
|
Romeo A, Easley J, Regan D, Hackett E, Johnson J, Johnson J, Puttlitz C, McGilvray K. Rotator cuff repair using a bioresorbable nanofiber interposition scaffold: a biomechanical and histologic analysis in sheep. J Shoulder Elbow Surg 2022; 31:402-412. [PMID: 34454041 PMCID: PMC9364572 DOI: 10.1016/j.jse.2021.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the mechanical, structural, and histologic quality of rotator cuff repairs augmented with an interposition electrospun nanofiber scaffold composed of polyglycolic acid (PGA) and poly-L-lactide-co-ε-caprolactone (PLCL) in an acute sheep model. METHODS Forty acute infraspinatus tendon detachment and repair procedures were performed in a sheep infraspinatus model using a double-row transosseous-equivalent anchor technique either with an interposition nanofiber scaffold composed of polyglycolic acid-poly-L-lactide-co-ε-caprolactone or with no scaffold. Animals were euthanized at the 6-week (20 samples) and 12-week (20 samples) postoperative time points to assess the biomechanical and histologic properties of the repairs and to compare differences within each group. RESULTS Within the scaffold-treated group, there was a significant increase in ultimate failure force (in newtons) from 6 to 12 weeks (P < .01), a significant increase in ultimate failure load from 6 to 12 weeks (P < .01), and a significant increase in ultimate failure stress (in megapascals) from 6 to 12 weeks (P < .01). At 6 weeks, the tendon-bone attachment was most consistent with an "indirect" type of insertion, whereas at 12 weeks, a visible difference in the progression and re-formation of the enthesis was observed. Compared with controls, animals in the scaffold-treated group displayed an insertion of the fibrous tendon with the humeral footprint that was beginning to be organized in a manner similar to the "native" direct/fibrocartilaginous insertion of the ovine infraspinatus tendon. In the majority of these animals treated with the scaffold, prominent perforating collagen fibers, similar to Sharpey fibers, were present and extending through a region of calcified fibrocartilage and attaching to the humeral footprint. No surgical complications occurred in any of the 40 sheep, including delayed wound healing or infection. CONCLUSIONS In a sheep acute rotator cuff repair model, securing a nanofiber scaffold between the tendon and the bone using a double-row transosseous-equivalent anchor fixation technique resulted in greater failure strength. Additionally, at the enthesis, Sharpey fiber-like attachments (ie, collagen fibers extending from the tendon into the calcified fibrocartilage of the humerus) were observed, which were not seen in the control group.
Collapse
Affiliation(s)
| | - Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Dan Regan
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Eileen Hackett
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - James Johnson
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | - Christian Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA,Reprint requests: Kirk McGilvray, PhD, Orthopedic Bioengineering Research Laboratory, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523, USA. (K. McGilvray)
| |
Collapse
|
21
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
22
|
Chen G, Fan D, Zhang W, Wang S, Gu J, Gao Y, He L, Li W, Zhang C, Li M, Zhang Y, Liu Z, Hao Q. Mkx mediates tenogenic differentiation but incompletely inhibits the proliferation of hypoxic MSCs. Stem Cell Res Ther 2021; 12:426. [PMID: 34321079 PMCID: PMC8317301 DOI: 10.1186/s13287-021-02506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia has been shown to be able to induce tenogenic differentiation and proliferation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation and proliferation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs. Methods qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit-8 assay, colony formation unit assay, cell cycle analysis, and EdU assay were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA. Results Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs and increased much higher in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after downregulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties, and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values, the clone numbers, the percentage of cells in S phage, and cell proliferation potential of both normoxic and hypoxic BMSCs were all significantly increased after knockdown of Mkx and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was upregulated. Conclusions These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs but could not completely repress the proliferation of hypoxic MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02506-3.
Collapse
Affiliation(s)
- Guanyin Chen
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Dong Fan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaohui Liu
- Department of Rehabilitation and Physiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
23
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
24
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
25
|
Sensini A, Massafra G, Gotti C, Zucchelli A, Cristofolini L. Tissue Engineering for the Insertions of Tendons and Ligaments: An Overview of Electrospun Biomaterials and Structures. Front Bioeng Biotechnol 2021; 9:645544. [PMID: 33738279 PMCID: PMC7961092 DOI: 10.3389/fbioe.2021.645544] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
The musculoskeletal system is composed by hard and soft tissue. These tissues are characterized by a wide range of mechanical properties that cause a progressive transition from one to the other. These material gradients are mandatory to reduce stress concentrations at the junction site. Nature has answered to this topic developing optimized interfaces, which enable a physiological transmission of load in a wide area over the junction. The interfaces connecting tendons and ligaments to bones are called entheses, while the ones between tendons and muscles are named myotendinous junctions. Several injuries can affect muscles, bones, tendons, or ligaments, and they often occur at the junction sites. For this reason, the main aim of the innovative field of the interfacial tissue engineering is to produce scaffolds with biomaterial gradients and mechanical properties to guide the cell growth and differentiation. Among the several strategies explored to mimic these tissues, the electrospinning technique is one of the most promising, allowing to generate polymeric nanofibers similar to the musculoskeletal extracellular matrix. Thanks to its extreme versatility, electrospinning has allowed the production of sophisticated scaffolds suitable for the regeneration of both the entheses and the myotendinous junctions. The aim of this review is to analyze the most relevant studies that applied electrospinning to produce scaffolds for the regeneration of the enthesis and the myotendinous junction, giving a comprehensive overview on the progress made in the field, in particular focusing on the electrospinning strategies to produce these scaffolds and their mechanical, in vitro, and in vivo outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gabriele Massafra
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Health Sciences and Technologies – Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Lim TK, Dorthé E, Williams A, D'Lima DD. Nanofiber Scaffolds by Electrospinning for Rotator Cuff Tissue Engineering. Chonnam Med J 2021; 57:13-26. [PMID: 33537215 PMCID: PMC7840345 DOI: 10.4068/cmj.2021.57.1.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears continue to be at risk of retear or failure to heal after surgical repair, despite the use of various surgical techniques, which stimulate development of novel scaffolding strategies. They should be able to address the known causes of failure after the conventional rotator cuff repair: (1) failure to reproduce the normal tendon healing process, (2) resultant failure to reproduce four zones of the enthesis, and (3) failure to attain sufficient mechanical strength after repair. Nanofiber scaffolds are suited for this application because they can be engineered to mimic the ultrastructure and properties of the native rotator cuff tendon. Among various methods for tissue-engineered nanofibers, electrospinning has recently been highlighted in the rotator cuff field. Electrospinning can create fibrous and porous structures that resemble natural tendon's extracellular matrix. Other advantages include the ability to create relatively large surface-to-volume ratios, the ability to control fiber size from the micro to the nano scale, and the flexibility of material choices. In this review, we will discuss the anatomical and mechanical features of the rotator cuff tendon, their potential impacts on improper healing after repair, and the current knowledge of the use of electrospinning for rotator cuff tissue engineering.
Collapse
Affiliation(s)
- Tae Kang Lim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Erik Dorthé
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Austin Williams
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|