1
|
Reece AS, Hulse GK. Geospatiotemporal and Causal Inferential Study of European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Orofacial Anomalies. J Xenobiot 2023; 13:42-74. [PMID: 36810431 PMCID: PMC9944119 DOI: 10.3390/jox13010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Since high rates of congenital anomalies (CAs), including facial CAs (FCAs), causally attributed to antenatal and community cannabis use have been reported in several recent series, it was of interest to examine this subject in detail in Europe. METHODS CA data were taken from the EUROCAT database. Drug exposure data were downloaded from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Income was taken from the World Bank's online sources. RESULTS On the bivariate maps of both orofacial clefts and holoprosencephaly against resin, the Δ9-tetrahydrocannabinol concentration rates of both covariates increased together in France, Bulgaria, and the Netherlands. In the bivariate analysis, the anomalies could be ranked by the minimum E-value (mEV) as congenital glaucoma > congenital cataract > choanal atresia > cleft lip ± cleft palate > holoprosencephaly > orofacial clefts > ear, face, and neck anomalies. When nations with increasing daily use were compared to those without, the former had generally higher rates of FCAs (p = 0.0281). In the inverse probability weighted panel regression, the sequence of anomalies-orofacial clefts, anotia, congenital cataract, and holoprosencephaly-had positive and significant cannabis coefficients of p = 2.65 × 10-5, 1.04 × 10-8, 5.88 × 10-16, and 3.21 × 10-13, respectively. In the geospatial regression, the same series of FCAs had positive and significant regression terms for cannabis of p = 8.86 × 10-9, 0.0011, 3.36 × 10-8, and 0.0015, respectively. Some 25/28 (89.3%) E-value estimates and 14/28 (50%) mEVs were >9 (considered to be in the high range), and 100% of both were >1.25 (understood to be in the causal range). CONCLUSION Rising cannabis use is associated with all the FCAs and fulfils the epidemiological criteria for causality. The data indicate particular concerns relating to brain development and exponential genotoxic dose-responses, urging caution with regard to community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Correspondence: ; Tel.: +61-7-3844-4000; Fax: +61-7-3844-4015
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
2
|
Lenzi M, Turrini E, Catanzaro E, Cocchi V, Guerrini A, Hrelia P, Gasperini S, Stefanelli C, Abdi Bellau ML, Pellicioni V, Tacchini M, Greco G, Fimognari C. In Vitro Investigation of the Anticancer Properties of Ammodaucus Leucotrichus Coss. & Dur.. Pharmaceuticals (Basel) 2022; 15:1491. [PMID: 36558942 PMCID: PMC9785806 DOI: 10.3390/ph15121491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.
Collapse
Affiliation(s)
- Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, via San Donato 15, 40127 Bologna, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, via San Donato 15, 40127 Bologna, Italy
| | - Alessandra Guerrini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini 3, 44123 Ferrara, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, via San Donato 15, 40127 Bologna, Italy
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, via San Donato 15, 40127 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | | | - Valentina Pellicioni
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Massimo Tacchini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, Piazzale Luciano Chiappini 3, 44123 Ferrara, Italy
| | - Giulia Greco
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
3
|
Gasperini S, Bilel S, Cocchi V, Marti M, Lenzi M, Hrelia P. The Genotoxicity of Acrylfentanyl, Ocfentanyl and Furanylfentanyl Raises the Concern of Long-Term Consequences. Int J Mol Sci 2022; 23:ijms232214406. [PMID: 36430883 PMCID: PMC9697990 DOI: 10.3390/ijms232214406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Three fentanyl analogues Acrylfentanyl, Ocfentanyl and Furanylfentanyl are potent, rapid-acting synthetic analgesics that recently appeared on the illicit market of new psychoactive substances (NPS) under the class of new synthetic opioids (NSO). Pharmacotoxicological data on these three non-pharmaceutical fentanyl analogues are limited and studies on their genotoxicity are not yet available. Therefore, the aim of the present study was to investigate this property. The ability to induce structural and numerical chromosomal aberrations in human lymphoblastoid TK6 cells was evaluated by employing the flow cytometric protocol of the in vitro mammalian cell micronucleus test. Our study demonstrated the non-genotoxicity of Fentanyl, i.e., the pharmaceutical progenitor of the class, while its illicit non-pharmaceutical analogues were found to be genotoxic. In particular, Acrylfentanyl led to a statistically significant increase in the MNi frequency at the highest concentration tested (75 μM), while Ocfentanyl and Furanylfentnyl each did so at both concentrations tested (150, 200 μM and 25, 50 μM, respectively). The study ended by investigating reactive oxygen species (ROS) induction as a possible mechanism linked to the proved genotoxic effect. The results showed a non-statistically significant increase in ROS levels in the cultures treated with all molecules under study. Overall, the proved genotoxicity raises concern about the possibility of serious long-term consequences.
Collapse
Affiliation(s)
- Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Sabrine Bilel
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
6
|
Lenzi M, Gasperini S, Cocchi V, Tirri M, Marti M, Hrelia P. Genotoxicological Characterization of (±)cis-4,4'-DMAR and (±)trans-4,4'-DMAR and Their Association. Int J Mol Sci 2022; 23:ijms23105849. [PMID: 35628658 PMCID: PMC9142882 DOI: 10.3390/ijms23105849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The novel psychoactive substance (NPS) 4-Methyl-5-(4-methylphenyl)-4,5-dihydroxazol-2-amine (4,4′-DMAR) shows psychostimulant activity. Data on the acute toxicity of 4,4′-DMAR are becoming increasingly available, yet the long-term effects are still almost unknown. In particular, no data on genotoxicity are available. Therefore, the aim of the present study was to evaluate its genotoxic potential using the “In Vitro Mammalian Cell Micronucleus Test” (MNvit) on (±)cis-4,4′-DMAR and (±)trans-4,4′-DMAR and their associations. The analyses were conducted in vitro on human TK6 cells. To select suitable concentrations for MNvit, we preliminarily evaluated cytotoxicity and apoptosis. All endpoints were analysed by flow cytometry. The results reveal the two racemates’ opposite behaviours: (±)cis-4,4′-DMAR shows a statistically significant increase in micronuclei (MNi) frequency that (±)trans-4,4′-DMAR is completely incapable of. This contrast confirms the well-known possibility of observing opposite biological effects of the cis- and trans- isomers of a compound, and it highlights the importance of testing single NPSs that show even small differences in structure or conformation. The genotoxic capacity demonstrated stresses an additional alarming toxicological concern related to this NPS. Moreover, the co-treatments indicate that consuming both racemates will magnify the genotoxic effect, an aspect to consider given the unpredictability of illicit drug composition.
Collapse
Affiliation(s)
- Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Micaela Tirri
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Marti
- LTTA Center and University Center of Gender Medicine, Department of Translational Medicine, Section of Legal Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 2 - categorical bivariate analysis and attributable fractions. Arch Public Health 2022; 80:100. [PMID: 35354495 PMCID: PMC8969377 DOI: 10.1186/s13690-022-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As the cannabis-cancer relationship remains an important open question epidemiological investigation is warranted to calculate key metrics including Rate Ratios (RR), Attributable Fractions in the Exposed (AFE) and Population Attributable Risks (PAR) to directly compare the implicated case burden between emerging cannabinoids and the established carcinogen tobacco. METHODS SEER*Stat software from Centres for Disease Control was used to access age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") from National Cancer Institute in US states 2001-2017. Drug exposures taken from the National Survey of Drug Use and Health 2003-2017, response rate 74.1%. Federal seizure data provided cannabinoid exposure. US Census Bureau furnished income and ethnicity. Exposure dichotomized as highest v. lowest exposure quintiles. Data processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Fifteen cancers displayed elevated E-Values in the highest compared to the lowest quintiles of cannabidiol exposure, namely (in order): prostate, melanoma, Kaposi sarcoma, ovarian, bladder, colorectal, stomach, Hodgkins, esophagus, Non-Hodgkins lymphoma, All cancer, brain, lung, CLL and breast. Eleven cancers were elevated in the highest THC exposure quintile: melanoma, thyroid, liver, AML, ALL, pancreas, myeloma, CML, breast, oropharynx and stomach. Twelve cancers were elevated in the highest tobacco quintile confirming extant knowledge and study methodology. For cannabidiol RR declined from 1.397 (95%C.I. 1.392, 1.402), AFE declined from 28.40% (28.14, 28.66%), PAR declined from 15.3% (15.1, 15.5%) and minimum E-Values declined from 2.13. For THC RR declined from 2.166 (95%C.I. 2.153, 2.180), AFE declined from 53.8% (53.5, 54.1%); PAR declined from 36.1% (35.9, 36.4%) and minimum E-Values declined from 3.72. For tobacco, THC and cannabidiol based on AFE this implies an excess of 93,860, 91,677 and 48,510 cases; based on PAR data imply an excess of 36,450, 55,780 and 14,819 cases. CONCLUSION Data implicate 23/28 cancers as being linked with THC or cannabidiol exposure with epidemiologically-causal relationships comparable to those for tobacco. AFE-attributable cases for cannabinoids (91,677 and 48,510) compare with PAR-attributable cases for tobacco (36,450). Cannabinoids constitute an important multivalent community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
8
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 1 - continuous bivariate analysis. Arch Public Health 2022; 80:99. [PMID: 35354487 PMCID: PMC8966217 DOI: 10.1186/s13690-022-00811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genotoxic and cancerogenic impacts of population-wide cannabinoid exposure remains an open but highly salient question. The present report examines these issues from a continuous bivariate perspective with subsequent reports continuing categorical and detailed analyses. METHODS Age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") was sourced using SEER*Stat software from Centres for Disease Control and National Cancer Institute across US states 2001-2017. It was joined with drug exposure data from the nationally representative National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017, response rate 74.1%. Cannabinoid data was from Federal seizure data. Income and ethnicity data sourced from the US Census Bureau. Data was processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Regression lines were charted for cancer-substance exposures for cigarettes, alcohol use disorder (AUD), cannabis, THC, cannabidiol, cannabichromene, cannabinol and cannabigerol. In this substance series positive trends were found for 14, 9, 6, 9, 12, 6, 9 and 7 cancers; with largest minimum E-Values (mEV) of 1.76 × 109, 4.67 × 108, 2.74 × 104, 4.72, 2.34 × 1018, 2.74 × 1017, 1.90 × 107, 5.05 × 109; and total sum of exponents of mEV of 34, 32, 13, 0, 103, 58, 25, 31 indicating that cannabidiol followed by cannabichromene are the most strongly implicated in environmental carcinogenesis. Breast cancer was associated with tobacco and all cannabinoids (from mEV = 3.53 × 109); "All Cancer" (non-skin) linked with cannabidiol (mEV = 1.43 × 1011); pediatric AML linked with cannabis (mEV = 19.61); testicular cancer linked with THC (mEV = 1.33). Cancers demonstrating elevated mEV in association with THC were: thyroid, liver, pancreas, AML, breast, oropharynx, CML, testis and kidney. Cancers demonstrating elevated mEV in relation to cannabidiol: prostate, bladder, ovary, all cancers, colorectum, Hodgkins, brain, Non-Hodgkins lymphoma, esophagus, breast and stomach. CONCLUSION Data suggest that cannabinoids including THC and cannabidiol are important community carcinogens exceeding the effects of tobacco or alcohol. Testicular, (prostatic) and ovarian tumours indicate mutagenic corruption of the germline in both sexes; pediatric tumourigenesis confirms transgenerational oncogenesis; quantitative criteria implying causality are fulfilled.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
9
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 3 - spatiotemporal, multivariable and causal inferential pathfinding and exploratory analyses of prostate and ovarian cancers. Arch Public Health 2022; 80:101. [PMID: 35354499 PMCID: PMC8969240 DOI: 10.1186/s13690-022-00813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epidemiology of cannabinoid-related cancerogenesis has not been studied with cutting edge epidemiological techniques. Building on earlier bivariate papers in this series we aimed to conduct pathfinding studies to address this gap in two tumours of the reproductive tract, prostate and ovarian cancer. METHODS Age-standardized cancer incidence data for 28 tumour types (including "All (non-skin) Cancer") was sourced from Centres for Disease Control and National Cancer Institute using SEER*Stat software across US states 2001-2017. Drug exposure was sourced from the nationally representative household survey National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017 with response rate 74.1%. Federal seizure data provided cannabinoid concentration data. US Census Bureau provided income and ethnicity data. Inverse probability weighted mixed effects, robust and panel regression together with geospatiotemporal regression analyses were conducted in R. E-Values were also calculated. RESULTS 19,877 age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Inverse probability weighted regressions for prostate and ovarian cancers confirmed causal associations robust to adjustment. Cannabidiol alone was significantly associated with prostate cancer (β-estimate = 1.61, (95%C.I. 0.99, 2.23), P = 3.75 × 10- 7). In a fully adjusted geospatiotemporal model at one spatial and two temporal years lags cannabidiol was significantly independently associated with prostate cancer (β-estimate = 2.08, (1.19, 2.98), P = 5.20 × 10- 6). Cannabidiol alone was positively associated with ovarian cancer incidence in a geospatiotemporal model (β-estimate = 0.36, (0.30, 0.42), P < 2.20 × 10- 16). The cigarette: THC: cannabidiol interaction was significant in a fully adjusted geospatiotemporal model at six years of temporal lag (β-estimate = 1.93, (1.07, 2.78), P = 9.96 × 10- 6). Minimal modelled polynomial E-Values for prostate and ovarian cancer ranged up to 5.59 × 1059 and 1.92 × 10125. Geotemporospatial modelling of these tumours showed that the cannabidiol-carcinogenesis relationship was supra-linear and highly sigmoidal (P = 1.25 × 10- 45 and 12.82 × 10- 52 for linear v. polynomial models). CONCLUSION Cannabinoids including THC and cannabidiol are therefore important community carcinogens additive to the effects of tobacco and greatly exceeding those of alcohol. Reproductive tract carcinogenesis necessarily implies genotoxicity and epigenotoxicity of the germ line with transgenerational potential. Pseudoexponential and causal dose-response power functions are demonstrated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
10
|
Cocchi V, Gasperini S, Lenzi M. Anthraquinones: Genotoxic until Proven Otherwise? A Study on a Substance-Based Medical Device to Implement Available Data for a Correct Risk Assessment. TOXICS 2022; 10:toxics10030142. [PMID: 35324767 PMCID: PMC8953541 DOI: 10.3390/toxics10030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
A genotoxicological study was carried out on a substance-based medical device (SMD) containing anthraquinones in order to evaluate its potential mutagenic effect. The “In Vitro Mammalian Cell Micronucleus Test” was performed on human TK6 cells by flow cytometry. Cultures were treated with concentrations of SMD tested in the range of 0–2 mg/mL for short treatment time (3 h) both in the absence and presence of an exogenous metabolic activation system, followed by a recovery period in fresh medium (23 h) and for extended treatment time (26 h) without an exogenous metabolic activation system. At the end of both treatment times, cytotoxicity, cytostasis, apoptosis and micronuclei (MNi) frequency were analysed in treated cultures and then compared with those measured in concurrent negative control cultures. The SMD did not induce a statistically significant increase MNi frequency under any of experimental conditions tested. The negative outcome shows that the SMD is non-mutagenic in terms of its ability to induce chromosomal aberrations both in the absence and presence of an exogenous metabolic activation system. The study ended by analyzing intracellular ROS levels to exclude the pro-oxidant ability, typically linked to DNA damage. On the contrary, our results demonstrated the ability the SMD to counteract oxidative stress.
Collapse
|
11
|
Correia B, Fernandes J, Botica MJ, Ferreira C, Quintas A. Novel Psychoactive Substances: The Razor's Edge between Therapeutical Potential and Psychoactive Recreational Misuse. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9030019. [PMID: 35323718 PMCID: PMC8950629 DOI: 10.3390/medicines9030019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Novel psychoactive substances (NPS) are compounds of natural and synthetic origin, similar to traditional drugs of abuse. NPS are involved in a contemporary trend whose origin lies in a thinner balance between legitimate therapeutic drug research and legislative control. The contemporary NPS trend resulted from the replacement of MDMA by synthetic cathinones in 'ecstasy' during the 2000s. The most common NPS are synthetic cannabinoids and synthetic cathinones. Interestingly, during the last 50 years, these two classes of NPS have been the object of scientific research for a set of health conditions. METHODS Searches were conducted in the online database PubMed using boolean equations. RESULTS Synthetic cannabinoids displayed protective and therapeutic effects for inflammatory, neurodegenerative and oncologic pathologies, activating the immune system and reducing inflammation. Synthetic cathinones act similarly to amphetamine-type stimulants and can be used for depression and chronic fatigue. CONCLUSIONS Despite the scientific advances in this field of research, pharmacological application of NPS is being jeopardized by fatalities associated with their recreational use. This review addresses the scientific achievements of these two classes of NPS and the toxicological data, ending with a reflection on Illicit and NPS control frames.
Collapse
Affiliation(s)
- Beatriz Correia
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Joana Fernandes
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Maria João Botica
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carla Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Rua Professor Lima Basto, 1099-023 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
12
|
Kevin RC, Cairns EA, Boyd R, Arnold JC, Bowen MT, McGregor IS, Banister SD. Off-target pharmacological profiling of synthetic cannabinoid receptor agonists including AMB-FUBINACA, CUMYL-PINACA, PB-22, and XLR-11. Front Psychiatry 2022; 13:1048836. [PMID: 36590635 PMCID: PMC9798004 DOI: 10.3389/fpsyt.2022.1048836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances that have been associated with multiple instances and types of toxicity. Some SCRAs appear to carry a greater toxicological burden than others, or compared to the prototypical cannabis-derived agonist Δ9-tetrahydrocannabinol (Δ9-THC), despite a common primary mechanism of action via cannabinoid 1 (CB1) receptors. "Off-target" (i.e., non-CB1 receptor) effects could underpin this differential toxicity, although there are limited data around the activity of SCRAs at such targets. METHODS A selection of 7 SCRAs (AMB-FUBINACA, XLR11, PB-22, AKB-48, AB-CHMINICA, CUMYL-PINACA, and 4F-MDMB-BUTINACA), representing several distinct chemotypes and toxicological profiles, underwent a 30 μM single-point screen against 241 G protein-coupled receptor (GPCR) targets in antagonist and agonist mode using a cellular β-arrestin recruitment assay. Strong screening "hits" at specific GPCRs were followed up in detail using concentration-response assays with AMB-FUBINACA, a SCRA with a particularly notable history of toxicological liability. RESULTS The single-point screen yielded few hits in agonist mode for any compound aside from CB1 and CB2 receptors, but many hits in antagonist mode, including a range of chemokine receptors, the oxytocin receptor, and histamine receptors. Concentration-response experiments showed that AMB-FUBINACA inhibited most off-targets only at the highest 30 μM concentration, with inhibition of only a small subset of targets, including H1 histamine and α2B adrenergic receptors, at lower concentrations (≥1 μM). AMB-FUBINACA also produced concentration-dependent CB1 receptor signaling disruption at concentrations higher than 1 μM, but did not produce overt cytotoxicity beyond CP55,940 or Δ9-THC in CB1 expressing cells. DISCUSSION These results suggest that while some "off-targets" could possibly contribute to the SCRA toxidrome, particularly at high concentrations, CB1-mediated cellular dysfunction provides support for hypotheses concerning on-target, rather than off-target, toxicity. Further investigation of non-GPCR off-targets is warranted.
Collapse
Affiliation(s)
- Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Michael T Bowen
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Lenzi M, Cocchi V, Gasperini S, Arfè R, Marti M, Hrelia P. Evaluation of Cytotoxic and Mutagenic Effects of the Synthetic Cathinones Mexedrone, α-PVP and α-PHP. Int J Mol Sci 2021; 22:ijms22126320. [PMID: 34204826 PMCID: PMC8231654 DOI: 10.3390/ijms22126320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35–100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.
Collapse
Affiliation(s)
- Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
- Correspondence:
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| |
Collapse
|
14
|
Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int J Mol Sci 2020; 21:ijms21249616. [PMID: 33348640 PMCID: PMC7766159 DOI: 10.3390/ijms21249616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25–35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still “safe” doses could run into genotoxicity and in the well-known long-term effects associated.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
- Correspondence:
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| |
Collapse
|
15
|
Cocchi V, Hrelia P, Lenzi M. Antimutagenic and Chemopreventive Properties of 6-(Methylsulfinyl) Hexyl Isothiocyanate on TK6 Human Cells by Flow Cytometry. Front Pharmacol 2020; 11:1242. [PMID: 32973500 PMCID: PMC7461824 DOI: 10.3389/fphar.2020.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/29/2020] [Indexed: 11/30/2022] Open
Abstract
6-(methylsulfinyl) hexyl isothiocyanate (6-MITC), is the main bioactive compound present in Wasabia japonica rhizome. Several scientific studies have shown that 6-MITC possesses interesting antimicrobial, anti-inflammatory, antiplatelet and antioxidant properties which therefore suggested us it could have an interesting chemopreventive potential. In a recent publication, we demonstrated, in two different leukemia cell lines, its ability to modulate several mechanisms supporting its antitumor activity. For this reason, we thought useful to continue the research, by investigating the potential antimutagenic activity of 6-MITC and thus better define its profile as a possible chemopreventive agent. 6-MITC antimutagenic effect against two known mutagenic agents: the clastogen Mitomycin C (MMC) and the aneuplodogen Vinblastine (VINB), was analyzed, in terms of micronuclei frequency decrease, after short- and long- time treatment on TK6 human cells, using a new automated protocol of the “In Vitro Mammalian Cell Micronucleous Test” by flow cytometry. The results showed a different behavior of the isothiocyante. In particular, 6-MITC was unable to counteract the MMC genotoxicity, but when it was associated with VINB a statistically significant decrease in the micronuclei frequency was registered. Overall, the results obtained suggest a potential antimutagenic activity of 6-MITC, in particular against the aneuploidogen agents. This ability, to inhibit or counteract the mutations at the cellular level has a great therapeutic value and it represents a mechanism through a chemopreventive agent can express its activity.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Afrin F, Chi M, Eamens AL, Duchatel RJ, Douglas AM, Schneider J, Gedye C, Woldu AS, Dun MD. Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer. Cancers (Basel) 2020; 12:cancers12041033. [PMID: 32340151 PMCID: PMC7226605 DOI: 10.3390/cancers12041033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion. Further, the medicinal and clinical utility of cannabis is limited by the psychotropic side effects of ∆9-tetrahydrocannabinol (∆9-THC). Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively. An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking. In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis. Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.
Collapse
Affiliation(s)
- Farjana Afrin
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Mengna Chi
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Alicia M. Douglas
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Jennifer Schneider
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Craig Gedye
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Calvary Mater Newcastle, Waratah, NSW 2298, Australia
| | - Ameha S. Woldu
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| | - Matthew D. Dun
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| |
Collapse
|