1
|
Yang Y, Hou X, Kong S, Zha Z, Huang M, Li C, Li N, Ge F, Chen W. Intraoperative radiotherapy in breast cancer: Alterations to the tumor microenvironment and subsequent biological outcomes (Review). Mol Med Rep 2023; 28:231. [PMID: 37888611 PMCID: PMC10636769 DOI: 10.3892/mmr.2023.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Intraoperative radiotherapy (IORT) is a precise, single high‑dose irradiation directly targeting the tumor bed during surgery. In comparison with traditional external beam RT, it minimizes damage to other normal tissues, ensures an adequate dose to the tumor bed and results in improved cosmetic outcomes and quality of life. Furthermore, IORT offers a shorter treatment duration, lower economic costs and therapeutic efficacy comparable with traditional RT. However, its relatively higher local recurrence rate limits its further clinical applications. Identifying effective radiosensitizing drugs and rational RT protocols will improve its advantages. Furthermore, IORT may not only damage DNA to directly kill breast tumor cells but also alter the tumor microenvironment (TME) to exert a sustained antitumor effect. Specific doses of IORT may exert anti‑angiogenic effects, and consequently antitumor effects, by impacting post‑radiation peripheral blood levels of vascular endothelial growth factor and delta‑like 4. IORT may also modify the postoperative wound fluid composition to continuously inhibit tumor growth, e.g. by reducing components such as microRNA (miR)‑21, miR‑221, miR‑115, oncostatin M, TNF‑β, IL‑6 and IL‑8, and by elevating levels of components such as miR‑223, to inhibit the ability of postoperative wound fluid to induce proliferation, invasion and migration of residual cancer cells. IORT can also modify cancer cell glucose metabolism to inhibit the proliferation of residual tumor cells. In addition, IORT can induce a bystander effect, eliminating the postoperative wound fluid‑induced epithelial‑mesenchymal transition and tumor stem cell phenotype. Insights gained at the molecular level may provide new directions for identifying novel therapeutic targets and approaches. A more comprehensive understanding of the effects of IORT on the breast cancer (BC) TME may further its clinical application. Hence, the present article reviews the primary effects of IORT on BC and its impact on the TME, aiming to offer fresh research perspectives for relevant professionals.
Collapse
Affiliation(s)
- Yang Yang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xiaochen Hou
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Shujia Kong
- Department of Pharmacy, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Zhuocen Zha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Chenxi Li
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Na Li
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
2
|
Wang Q, Yu Q, Liu Y. E2F3 renders an immunosuppressive tumor microenvironment in nasopharyngeal carcinoma: Involvements of the transcription activation of PRC1 and BIRC5. Immun Inflamm Dis 2023; 11:e987. [PMID: 37647439 PMCID: PMC10461428 DOI: 10.1002/iid3.987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND E2F transcription factors are well-recognized oncogenic molecules, and their correlation with immune cell infiltration has recently been reported. This work studies the impacts and mechanism of E2F transcription factor 3 (E2F3) in the growth and tumor microenvironment (TME) of nasopharyngeal carcinoma (NPC). METHODS Aberrantly expressed transcription factors in NPC were screened by abundant bioinformatics analyses. Gene expression in NPC cells was analyzed by reverse transcription-quantitative polymerase chain reaction and Western blot analyses. Malignant behaviors of NPC cells were analyzed by cell counting kit-8, 5-ethynyl-2'-deoxyuridine labeling, Transwell assays, and xenograft tumor models. TPA-induced THP-1 cells (macrophages) were cultured in the conditioned medium of NPC cells to mimic tumor-associated macrophages (TAMs) in vivo, and these TAMs were cocultured with CD8+ T cells. Regulation of E2F3 on protein regulator of cytokinesis 1 (PRC1) and baculoviral IAP repeat containing 5 (BIRC5) was validated by chromatin immunoprecipitation and luciferase reporter assays. RESULTS E2F3 was highly expressed in NPC cells, and its knockdown suppressed malignant behavior and tumorigenic ability of the cells. The E2F3 knockdown condition downregulated M2 cytokines CD163 and interleukin-10 in TAMs, which further enhanced proliferation and activation of the cocultured CD8+ T cells. E2F3 promoted transcription of PRC1 and BRIC5. Furthermore, PRC1 or BRIC5 upregulation in NPC cells restored the malignant properties of NPC cells, reprogrammed the TAMs to M2 phenotype, and suppressed the CD8+ T cell proliferation and activation. CONCLUSION This work suggests that E2F3 renders an immunosuppressive TME in NPC by activating PRC1 and BIRC5. Suppression of any member involved might favor tumor elimination.
Collapse
Affiliation(s)
- Qiang Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Qi Yu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yueyang Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
3
|
Jeibouei S, Shams F, Mohebichamkhorami F, Sanooghi D, Faal B, Akbari ME, Zali H. Biological and clinical review of IORT-induced wound fluid in breast cancer patients. Front Oncol 2022; 12:980513. [DOI: 10.3389/fonc.2022.980513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022] Open
Abstract
Intraoperative radiotherapy (IORT) has become a growing therapy for early-stage breast cancer (BC). Some studies claim that wound fluid (seroma), a common consequence of surgical excision in the tumor cavity, can reflect the effects of IORT on cancer inhibition. However, further research by our team and other researchers, such as analysis of seroma composition, affected cell lines, and primary tissues in two-dimensional (2D) and three-dimensional (3D) culture systems, clarified that seroma could not address the questions about IORT effectiveness in the surgical site. In this review, we mention the factors involved in tumor recurrence, direct or indirect effects of IORT on BC, and all the studies associated with BC seroma to attain more information about the impact of IORT-induced seroma to make a better decision to remove or remain after surgery and IORT. Finally, we suggest that seroma studies cannot decipher the mechanisms underlying the effectiveness of IORT in BC patients. The question of whether IORT-seroma has a beneficial effect can only be answered in a trial with a clinical endpoint, which is not even ongoing.
Collapse
|
4
|
Nafissi N, Mohammadlou M, Akbari ME, Mahdavi SR, Sheikh M, Borji M, Babaee E, Baharlou R. The impact of intraoperative radiotherapy on breast cancer: focus on the levels of angiogenic factors. World J Surg Oncol 2022; 20:191. [PMID: 35681234 PMCID: PMC9178821 DOI: 10.1186/s12957-022-02653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Angiogenesis is one of the hallmarks of cancers that is involved in tumor progression. Angiogenic factors induce the formation of new blood vessels and tumor extension, and finally reduce the survival of patients. Intraoperative radiotherapy (IORT), in which radiation is delivered to the tumor bed can kill cells and change tumor microenvironment. Here, we compared the impact of IORT on the levels of angiogenic factors in the blood and surgical wound fluids (SWF) of the breast cancer patients. PATIENTS AND METHODS Three hundred sixty patients, who had undergone breast-conserving surgery between 2013 and 2018, were enrolled in IORT and non-IORT groups non-randomly. Blood and drained wound fluid (WF) samples were collected from the patients before and after surgery, followed by quantification of the amounts of TGF-β, EGF, FGF, VEGF, and DLL4 in the patients using ELISA. RESULTS Our results were indicative of significant differences between the pre-surgery and post-surgery serum levels of EGF, DLL4, and VEGF. Furthermore, ROC analyses showed that TGF-β and DLL4 can differentiate of the early-stage from late-stage of the disease. Interestingly, the rate of the death and recurrence was reduced in IORT group. CONCLUSIONS In summary, IORT is a safe and effective treatment that can affect angiogenic factors and improve the overall- and recurrence-free survival of breast cancer patients.
Collapse
Affiliation(s)
- Nahid Nafissi
- Department of Breast, Rasoul Akram Hospital Clinical Research Development Center (RCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Seyed Rabie Mahdavi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sheikh
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Borji
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Babaee
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Jeibouei S, Hojat A, Mostafavi E, Aref AR, Kalbasi A, Niazi V, Ajoudanian M, Mohammadi F, Saadati F, Javadi SM, Shams F, Moghaddam M, Karami F, Sharifi K, Moradian F, Akbari ME, Zali H. Radiobiological effects of wound fluid on breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic culture. Sci Rep 2022; 12:7668. [PMID: 35538133 PMCID: PMC9091274 DOI: 10.1038/s41598-022-11023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Intraoperative radiotherapy (IORT) could abrogate cancer recurrences, but the underlying mechanisms are unclear. To clarify the effects of IORT-induced wound fluid on tumor progression, we treated breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic cell culture systems, respectively. The viability, migration, and invasion of the cells under treatment of IORT-induced wound fluid (WF-RT) and the cells under surgery-induced wound fluid (WF) were compared. Our findings showed that cell viability was increased in spheroids under both WF treatments, whereas viability of the cell lines depended on the type of cells and incubation times. Both WFs significantly increased sub-G1 and arrested the cells in G0/G1 phases associated with increased P16 and P21 expression levels. The expression level of Caspase 3 in both cell culture systems and for both WF-treated groups was significantly increased. Furthermore, our results revealed that although the migration was increased in both systems of WF-treated cells compared to cell culture media-treated cells, E-cadherin expression was significantly increased only in the WF-RT group. In conclusion, WF-RT could not effectively inhibit tumor progression in an ex vivo tumor-on-chip model. Moreover, our data suggest that a microfluidic system could be a suitable 3D system to mimic in vivo tumor conditions than 2D cell culture.
Collapse
Affiliation(s)
- Shabnam Jeibouei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hojat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amir Reza Aref
- Xsphera Biosciences Inc., 6 Tide street, Boston, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alireza Kalbasi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ajoudanian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Mohammadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fariba Saadati
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Seyed Mohammadreza Javadi
- Department of Surgery, School of Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moghaddam
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Farshid Karami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cifarelli CP, Jacobson GM. Intraoperative Radiotherapy in Brain Malignancies: Indications and Outcomes in Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:768168. [PMID: 34858846 PMCID: PMC8631760 DOI: 10.3389/fonc.2021.768168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the continued controversy over defining an optimal delivery mechanism, the critical role of adjuvant radiation in the management of surgically resected primary and metastatic brain tumors remains one of the universally accepted standards in neuro-oncology. Local disease control still ranks as a significant predictor of survival in both high-grade glioma and treated intracranial metastases with radiation treatment being essential in maximizing tumor control. As with the emergence and eventual acceptance of cranial stereotactic radiosurgery (SRS) following an era dominated by traditional radiotherapy, evidence to support the use of intraoperative radiotherapy (IORT) in brain tumors requiring surgical intervention continues to accumulate. While the clinical trial strategies in treating glioblastoma with IORT involve delivery of a boost of cavitary radiation prior to the planned standard external beam radiation, the use of IORT in metastatic disease offers the potential for dose escalation to the level needed for definitive adjuvant radiation, eliminating the need for additional episodes of care while providing local control equal or superior to that achieved with SRS in a single fraction. In this review, we explore the contemporary clinical data on IORT in the treatment of brain tumors along with a discussion of the unique dosimetric and radiobiological factors inherent in IORT that could account for favorable outcome data beyond those seen in other techniques.
Collapse
Affiliation(s)
- Christopher P Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States.,Department of Radiation Oncology, West Virginia University, Morgantown, WV, United States
| | - Geraldine M Jacobson
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
7
|
Guillerm SO, Bourstyn E, Itti R, Cahen-Doidy L, Quéro L, Labidi M, Marchand E, Lorphelin H, Giacchetti S, Cuvier C, Espié M, Teixeira L, Hennequin C. Intraoperative Radiotherapy for Breast Cancer in Elderly Women. Clin Breast Cancer 2021; 22:e109-e113. [PMID: 34154928 DOI: 10.1016/j.clbc.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate outcomes and postoperative toxicities after intraoperative radiotherapy (IORT) in elderly women. POPULATION Women older than 65 years, with infiltrating ductal breast cancer ≤3 cm, expressing estrogen receptor (ER+) without Her2 overexpression, and with negative axillary nodes. TREATMENT Treatment consisted of partial mastectomy with a sentinel lymph node biopsy (SLNB) procedure; in case of positive SLNB, IORT was cancelled. IORT consisted in a total dose of 20 Gy in 1 fraction delivered at the surface of the applicator with the Intrabeam® technique. RESULTS IORT was planned to be administered to a total of 225 patients but was cancelled for 34 patients during surgery. Thus 191 patients were analyzed; mean age was 76 years, with 57 patients (30%) >80 years. Despite inclusion criteria, 15 had lobular carcinoma and 7 were triple negative. With a median follow-up of 40 months, we observed only 1 local recurrence, located in the skin over the initial tumor. The 5-year local relapse rate was 1.7%. A wound healing delay (>15 days) was observed in 21 patients (11%). Sixty-six patients (35%) had postoperative complications, mainly grade 2, resolving within a few days. Two patients needed surgical drainage for local abscesses. Long-term (>1 year) cosmetic outcome was evaluated in 120 patients and was judged excellent or good in 102 (91%). CONCLUSION IORT can be safely given to elderly women, with a good local control rate and without major toxicities.
Collapse
Affiliation(s)
- S Ophie Guillerm
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Edwige Bourstyn
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Ramona Itti
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Laurence Cahen-Doidy
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Laurent Quéro
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Mouna Labidi
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Eva Marchand
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Henri Lorphelin
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Sylvie Giacchetti
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Caroline Cuvier
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Marc Espié
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Luis Teixeira
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France
| | - Christophe Hennequin
- Radiation Oncology Department, Saint-Louis Hospital, Paris, France; Breast Cancer Unit, Saint-Louis Hospital, Paris, France.
| |
Collapse
|
8
|
Wuhrer A, Uhlig S, Tuschy B, Berlit S, Sperk E, Bieback K, Sütterlin M. Wound Fluid from Breast Cancer Patients Undergoing Intraoperative Radiotherapy Exhibits an Altered Cytokine Profile and Impairs Mesenchymal Stromal Cell Function. Cancers (Basel) 2021; 13:2140. [PMID: 33946741 PMCID: PMC8124792 DOI: 10.3390/cancers13092140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Intraoperative radiotherapy (IORT) displays an increasingly used treatment option for early breast cancer. It exhibits non-inferiority concerning the risk of recurrence compared to conventional external irradiation (EBRT) in suitable patients with early breast cancer. Since most relapses occur in direct proximity of the former tumor site, the reduction of the risk of local recurrence effected by radiotherapy might partially be due to an alteration of the irradiated tumor bed's micromilieu. Our aim was to investigate if IORT affects the local micromilieu, especially immune cells with concomitant cytokine profile, and if it has an impact on growth conditions for breast cancer cells as well as mammary mesenchymal stromal cells (MSC), the latter considered as a model of the tumor bed stroma.42 breast cancer patients with breast-conserving surgery were included, of whom 21 received IORT (IORT group) and 21 underwent surgery without IORT (control group). Drainage wound fluid (WF) was collected from both groups 24 h after surgery for flow cytometric analysis of immune cell subset counts and potential apoptosis and for multiplex cytokine analyses (cytokine array and ELISA). It served further as a supplement in cultures of MDA-MB 231 breast cancer cells and mammary MSC for functional analyses, including proliferation, wound healing and migration. Furthermore, the cytokine profile within conditioned media from WF-treated MSC cultures was assessed. Flow cytometric analysis showed no group-related changes of cell count, activation state and apoptosis rates of myeloid, lymphoid leucocytes and regulatory T cells in the WF. Multiplex cytokine analysis of the WF revealed group-related differences in the expression levels of several cytokines, e.g., oncostatin-M, leptin and IL-1β. The application of WF in MDA-MB 231 cultures did not show a group-related difference in proliferation, wound healing and chemotactic migration. However, WF from IORT-treated patients significantly inhibited mammary MSC proliferation, wound healing and migration compared to WF from the control group. The conditioned media collected from WF-treated MSC-cultures also exhibited altered concentrations of VEGF, RANTES and GROα. IORT causes significant changes in the cytokine profile and MSC growth behavior. These changes in the tumor bed could potentially contribute to the beneficial oncological outcome entailed by this technique. The consideration whether this alteration also affects MSC interaction with other stroma components presents a promising gateway for future investigations.
Collapse
Affiliation(s)
- Anne Wuhrer
- Department of Obstetrics and Gynecology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.T.); (S.B.); (M.S.)
| | - Stefanie Uhlig
- FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.U.); (K.B.)
| | - Benjamin Tuschy
- Department of Obstetrics and Gynecology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.T.); (S.B.); (M.S.)
| | - Sebastian Berlit
- Department of Obstetrics and Gynecology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.T.); (S.B.); (M.S.)
| | - Elena Sperk
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Karen Bieback
- FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (S.U.); (K.B.)
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, German Red Cross Blood Donor Services, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Marc Sütterlin
- Department of Obstetrics and Gynecology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (B.T.); (S.B.); (M.S.)
| |
Collapse
|
9
|
Yang Z, Zhang Q, Luo H, Shao L, Liu R, Kong Y, Zhao X, Geng Y, Li C, Wang X. Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis. Front Oncol 2021; 10:601620. [PMID: 33738244 PMCID: PMC7962605 DOI: 10.3389/fonc.2020.601620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics. Methods A549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway. Results Compared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway. Conclusion The bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells.
Collapse
Affiliation(s)
- Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lihua Shao
- Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yarong Kong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xueshan Zhao
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- The Basic Medical College of Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China.,Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|