1
|
Abhyankar SD, Luo Q, Hartman GD, Mahajan N, Corson TW, Oblak AL, Lamb BT, Bhatwadekar AD. Retinal dysfunction in APOE4 knock-in mouse model of Alzheimer's disease. Alzheimers Dement 2025. [PMID: 39749840 DOI: 10.1002/alz.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Late-onset Alzheimer's Disease (LOAD) is the predominant form of Alzheimer's disease (AD), and apolipoprotein E (APOE) ε4 is a strong genetic risk factor for LOAD. As an integral part of the central nervous system, the retina displays a variety of abnormalities in LOAD. Our study is focused on age-dependent retinal impairments in humanized APOE4-knock-in (KI) and APOE3-KI mice developed by the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium. METHODS All the experiments were performed on 52- to 57-week-old mice. The retina was assessed by optical coherence tomography, fundoscopy, fluorescein angiography, electroretinography, optomotor response, gliosis, and neuroinflammation. mRNA sequencing was performed to find molecular pathways. RESULTS APOE4-KI mice showed impaired retinal structure, vasculature, function, vision, increased gliosis and neuroinflammation, and downregulation of synaptogenesis. DISCUSSION The APOE ε4 allele is associated with increased susceptibility to retinal degeneration compared to the APOE ε3 allele. HIGHLIGHTS Apolipoprotein E (APOE)4 mice exhibit structural and functional deficits of the retina. The retinal defects in APOE4 mice are attributed to increased neuroinflammation. APOE4 mice show a unique retinal transcriptome, yet with key brain similarities. The retina offers a non-invasive biomarker for the detection and monitoring of Alzheimer's disease.
Collapse
Affiliation(s)
- Surabhi D Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gabriella D Hartman
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indianapolis, Indiana, USA
| | - Neha Mahajan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy W Corson
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indianapolis, Indiana, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indianapolis, Indiana, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indianapolis, Indiana, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Rajendrakumar AL, Ukraintseva S, Bagley O, Duan M, Yashin AI, Arbeev KG. Elevated blood glucose levels are associated with the progression of brain hypometabolism, and HDL-C and APOE4 add to this association. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314082. [PMID: 39399037 PMCID: PMC11469353 DOI: 10.1101/2024.09.20.24314082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Brain glucose hypometabolism has consistently been found in neurodegenerative disorders, including Alzheimer's disease (AD). High blood glucose and HDL cholesterol (HDL-C) levels have also been linked to neurodegeneration and AD. However, there is limited understanding of the relationships between dementia-related risk factors in the brain and blood. Methods A linear mixed model was used to examine the relationship between blood glucose and HDL-C levels and the progression of brain hypometabolism, adjusting for APOE4 and other clinical covariates. The hypometabolic convergence index (HCI) was measured by fluorodeoxyglucose-18 (FDG) positron emission tomography (PET) in participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data visualizations were generated to understand the joint effects of plasma glucose, HDL-C, and APOE4 on HCI. Results There were 336 individuals (781 observations), of whom 22.62% had AD. The majority were male (63.98%) and of white race, and 48.51% were carriers of APOE4. Over time, high blood glucose level was associated with the progression of brain glucose hypometabolism (β=0.33, 95% CI: 0.02, 0.64, p<0.05). A high plasma HDL-C level (β=1.22, 95% CI: 0.09, 2.35, p<0.05), more study visits (β=1.67, 95% CI: 1.37, 1.98, p<0.001), and being an APOE4 allele carrier (β=1.29, 95% CI: 0.15, 2.42, p<0.05) were also significant predictors of brain hypometabolism progression. APOE4 carrier status and number of visits account for the largest proportion of the variance from the fixed effects model. Random effects due to participant characteristics and fixed effects together accounted for 95.2% of the model variance. Subgroup analysis revealed that these effects were observed only in those without AD. Conclusion High plasma glucose levels facilitated the progression of brain hypometabolism. The effect was more prominent in the APOE4 double-carriers with elevated HDL-C. Elevated blood glucose may reflect systemic insulin resistance, which could impair brain glucose uptake, resulting in brain hypometabolism. Controlling blood glucose and HDL-C levels in APOE4 carriers may improve brain metabolism, potentially delaying the onset of dementia.
Collapse
Affiliation(s)
- Aravind Lathika Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | | |
Collapse
|
3
|
Chen W, Li B, Wang H, Wei G, Chen K, Wang W, Wang S, Liu Y. Apolipoprotein E E3/E4 genotype is associated with an increased risk of type 2 diabetes mellitus complicated with coronary artery disease. BMC Cardiovasc Disord 2024; 24:160. [PMID: 38491412 PMCID: PMC10941446 DOI: 10.1186/s12872-024-03831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Dyslipidemia is a co-existing problem in patients with diabetes mellitus (DM) and coronary artery disease (CAD), and apolipoprotein E (APOE) plays an important role in lipid metabolism. However, the relationship between the APOE gene polymorphisms and the risk of developing CAD in type 2 DM (T2DM) patients remains controversial. The aim of this study was to assess this relationship and provide a reference for further risk assessment of CAD in T2DM patients. METHODS The study included 378 patients with T2DM complicated with CAD (T2DM + CAD) and 431 patients with T2DM alone in the case group, and 351 individuals without DM and CAD were set as controls. The APOE rs429358 and rs7412 polymorphisms were genotyped by polymerase chain reaction (PCR) - microarray. Differences in APOE genotypes and alleles between patients and controls were compared. Multiple logistic regression analysis was performed after adjusting for age, gender, body mass index (BMI), history of smoking, and history of drinking to access the relationship between APOE genotypes and T2DM + CAD risk. RESULTS The frequencies of the APOE ɛ3/ɛ4 genotype and ε4 allele were higher in the T2DM + CAD patients, and the frequencies of the APOE ɛ3/ɛ3 genotype and ε3 allele were lower than those in the controls (all p < 0.05). The T2DM + CAD patients with ɛ4 allele had higher level in low-density lipoprotein cholesterol (LDL-C) than those in patients with ɛ2 and ɛ3 allele (p < 0.05). The results of logistic regression analysis showed that age ≥ 60 years old, and BMI ≥ 24.0 kg/m2 were independent risk factors for T2DM and T2DM + CAD, and APOE ɛ3/ɛ4 genotype (adjusted odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.18-3.14, p = 0.008) and ɛ4 allele (adjusted OR = 1.97, 95% CI = 1.23-3.17) were independent risk factors for T2DM + CAD. However, the APOE genotypes and alleles were not found to have relationship with the risk of T2DM. CONCLUSIONS APOE ε3/ε4 genotype and ε4 allele were independent risk factors for T2DM complicated with CAD, but not for T2DM.
Collapse
Affiliation(s)
- Wenhao Chen
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China.
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
| | - Bin Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Hao Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guoliang Wei
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Kehui Chen
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Weihong Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Shen Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuanliang Liu
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Department of Computer Tomography, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
4
|
Zhang X, Xie T, Zhou S, Yuan Y, Chen W, Zheng J, Liu X, Yuan T, Lu Y, Liu Z. Effects of the ApoE genotype on cognitive function in aging mice fed with a high-fat diet and the protective potential of n-3 polyunsaturated fatty acids. Food Funct 2024; 15:2249-2264. [PMID: 38319599 DOI: 10.1039/d3fo03965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The ApoE4 allele is the strongest genetic determinant for Alzheimer's disease (AD), while obesity is a strong environmental risk for AD. The modulatory effect of the ApoE genotype on aging-related cognitive function in tandem with a high-fat diet (HFD) remains uncertain. This study aimed to elucidate the effects of ApoE3/ApoE4 genotypes in aged mice exposed to a HFD, and the benefits of n-3 polyunsaturated fatty acids (PUFAs) from fish oil. Remarkably, the HFD led to weight gain and lipid accumulation, more pronounced in ApoE3 mice, while ApoE4 mice experienced exacerbated cerebral insulin resistance, neuroinflammation, and oxidative stress. Critically, n-3 PUFAs modulated the cerebral insulin signaling via the IRS-1/AKT/GLUT4 pathway, mitigated microglial hyperactivity, and reduced IL-6 and MDA levels, thereby counteracting cognitive deficits. These findings highlight the contrasting impacts of ApoE genotypes on aging mice exposed to a HFD, supporting n-3 PUFAs as a strategic nutritional intervention for brain health, especially for ApoE4 carriers.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yingxuan Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Zheng
- School of Nursing, Peking University, 100191, Beijing, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhui Lu
- School of Nursing, Peking University, 100191, Beijing, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.
- Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong, 523170, China
| |
Collapse
|
5
|
Compton H, Smith ML, Bull C, Korologou-Linden R, Ben-Shlomo Y, Bell JA, Williams DM, Anderson EL. Life course plasma metabolomic signatures of genetic liability to Alzheimer's disease. Sci Rep 2024; 14:3896. [PMID: 38365930 PMCID: PMC10873397 DOI: 10.1038/s41598-024-54569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Mechanisms through which most known Alzheimer's disease (AD) loci operate to increase AD risk remain unclear. Although Apolipoprotein E (APOE) is known to regulate lipid homeostasis, the effects of broader AD genetic liability on non-lipid metabolites remain unknown, and the earliest ages at which metabolic perturbations occur and how these change over time are yet to be elucidated. We examined the effects of AD genetic liability on the plasma metabolome across the life course. Using a reverse Mendelian randomization framework in two population-based cohorts [Avon Longitudinal Study of Parents and Children (ALSPAC, n = 5648) and UK Biobank (n ≤ 118,466)], we estimated the effects of genetic liability to AD on 229 plasma metabolites, at seven different life stages, spanning 8 to 73 years. We also compared the specific effects of APOE ε4 and APOE ε2 carriage on metabolites. In ALSPAC, AD genetic liability demonstrated the strongest positive associations with cholesterol-related traits, with similar magnitudes of association observed across all age groups including in childhood. In UK Biobank, the effect of AD liability on several lipid traits decreased with age. Fatty acid metabolites demonstrated positive associations with AD liability in both cohorts, though with smaller magnitudes than lipid traits. Sensitivity analyses indicated that observed effects are largely driven by the strongest AD instrument, APOE, with many contrasting effects observed on lipids and fatty acids for both ε4 and ε2 carriage. Our findings indicate pronounced effects of the ε4 and ε2 genetic variants on both pro- and anti-atherogenic lipid traits and sphingomyelins, which begin in childhood and either persist into later life or appear to change dynamically.
Collapse
Affiliation(s)
- Hannah Compton
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Madeleine L Smith
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline Bull
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Roxanna Korologou-Linden
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Joshua A Bell
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, London, UK
| | - Emma L Anderson
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK.
| |
Collapse
|
6
|
Safieh M, Liraz O, Ovadia M, Michaelson D. The Role of Impaired Receptor Trafficking in Mediating the Pathological Effects of APOE4 in Alzheimer's Disease. J Alzheimers Dis 2024; 97:753-775. [PMID: 38217595 PMCID: PMC10894586 DOI: 10.3233/jad-230514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is the most prevalent genetic risk factor of Alzheimer's disease. Several studies suggest that APOE4 binding to its receptors is associated with their internalization and accumulation in intracellular compartments. Importantly, this phenomenon also occurs with other, non-ApoE receptors. Based on these observations, we hypothesized that APOE4 pathological effects are mediated by impairment in the life cycle of distinct receptors (APOER2, LRP1, IR, VEGFR). OBJECTIVE To examine the effects of APOE genotype on receptors protein levels and compartmentalization. METHODS Primary mouse neurons were prepared from APOE3 or APOE4 targeted replacement mice, or APOE-KO mice. Specific receptors protein levels were evaluated in these neurons, utilizing immunofluorescent staining. Additionally, surface membrane protein levels of those receptors were assessed by cell surface biotinylation assay and ELISA. Receptors' colocalization with intracellular compartments was assessed by double staining and confocal microscopy, followed by colocalization analysis. Finally, LRP1 or APOER2 were knocked-down with CRISPR/Cas9 system to examine their role in mediating APOE4 effects on the receptors. RESULTS Our results revealed lower receptors' levels in APOE4, specifically on the membrane surface. Additionally, APOE4 affects the compartmentation of these receptors in two patterns: the first was observed with LRP1 and was associated with decreased receptor levels in numerous intracellular compartments. The second was obtained with the other receptors and was associated with their accumulation in early endosomes and their decrease in the late endosomes. CONCLUSIONS These results provide a unifying mechanism, in which APOE4 drives the down regulation of various receptors, which plays important roles in distinct APOE4 related pathological processes.
Collapse
Affiliation(s)
- Mirna Safieh
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Ori Liraz
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Maayan Ovadia
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Danny Michaelson
- Department of Neurobiology, Sagol School of Neurosciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
7
|
Gao Y, Yu H, Liu Y, Xu Z, He B, Liu H, Wang Y, Zhang Y, Liang Y, Yang Y, Zheng J, Wang J. GSK-3β activation mediates apolipoprotein E4-associated cognitive impairment in type 2 diabetes mellitus: A multicenter, cross-sectional study. J Diabetes 2024; 16:e13470. [PMID: 37700547 PMCID: PMC10809305 DOI: 10.1111/1753-0407.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
AIM Both the activation of glycogen synthase kinase-3β (GSK-3β) and the presence of ApoE ε4 genotype have been found to respectively correlate with cognitive decline in patients with type 2 diabetes mellitus (T2DM), who further show a high incidence of developing Alzheimer's disease. However, the relationship between ApoE ε4 and GSK-3β in the cognitive impairment of T2DM patients remains unclear. METHODS ApoE genotypes and platelet GSK-3β level were measured in 1139 T2DM patients recruited from five medical centers in Wuhan, China. Cognitive functions were assessed by Mini-Mental State Examination (MMSE). The association and the relationships among apolipoprotein E (ApoE) genotypes, GSK-3β activity and cognitive function were analyzed by regression and mediating effect analyses, respectively. RESULTS T2DM patients with ApoE ε4 but not ApoE ε2 haplotype showed poorer cognitive function and elevated platelet GSK-3β activity, when using ApoE ε3 as reference. The elevation of GSK-3β activity was positively correlated the diabetes duration, as well as plasma glycated hemoglobin (HbA1c) and glucose levels. Moreover, correlation and regression analysis also revealed significant pairwise correlations among GSK-3β activity, ApoE gene polymorphism and cognitive function. Lastly, using Baron and Kenny modeling, we unveiled a mediative role of GSK-3β activity between ApoE ε4 and cognitive impairment. CONCLUSION We reported here that the upregulation of GSK-3β activity mediates the exacerbation of cognitive impairment by ApoE ε4-enhanced cognitive impairment in T2DM patients, suggesting GSK-3β inhibitors as promising drugs for preserving cognitive function in T2DM patients, especially to those with ApoE ε4 genotype.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological DisordersTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of RadiologyWuhan Brain HospitalWuhanChina
| | - Haitao Yu
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Xu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Benrong He
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological DisordersTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Honghai Liu
- School of Medicine and Health Management, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuying Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological DisordersTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Li‐Yuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Liang
- Department of RadiologyWuhan Brain HospitalWuhanChina
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological DisordersTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical SciencesPeking University; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking UniversityBeijingChina
| | - Jian‐Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological DisordersTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
8
|
Han W, Xiong N, Zhong R, Pan Z. E2/E3 and E3/E4 Genotypes of the Apolipoprotein E are Associated with Higher Risk of Diabetes Mellitus in Patients with Hypertension. Int J Gen Med 2023; 16:5579-5586. [PMID: 38034897 PMCID: PMC10683662 DOI: 10.2147/ijgm.s438008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Apolipoprotein E (APOE) plays an important role in the lipid metabolism. APOE polymorphisms have been implicated in susceptibility to diabetes mellitus (DM). However, the association between APOE polymorphisms and the risk of DM among the hypertensive patients remains unclear. Our study aimed to evaluate this relationship to provide clues for further developing DM in hypertensive patients. Methods The study included 808 hypertensive patients with DM and 1226 hypertensive patients without DM as controls. The APOE 388T>C (rs429358) and 526C>T (rs7412) polymorphisms were genotyped by polymerase chain reaction (PCR) - microarray. Differences in APOE genotypes between subjects and controls were compared. To analyze the relationship between APOE genotypes and DM risk, multiple logistic regression analysis was performed after adjusting for gender, age, smoking history, and drinking history. Results The APOE E2/E4, E3/E3 genotype and ε2, ε3 allele frequency had significant difference between DM patients and controls (P<0.05). The DM patients with ɛ4 allele had lower level in high-density lipoprotein cholesterol (HDL-C) and higher level in apolipoprotein B (ApoB) than those with ɛ2 allele. The results of logistic regression analysis indicated that the APOE genotype of E2/E3 with adjusted OR=1.350 (95% Cl=1.009-1.806, P=0.043) and E3/E4 with adjusted OR=1.325 (95% Cl=1.034-1699, P=0.026) may be independent risk factors for DM. Conclusion APOE E2/E3 and E3/E4 genotypes may be risk factors for developing diabetes mellitus in hypertensive patients.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renkai Zhong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhongyi Pan
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
9
|
Aderinto N, Olatunji G, Abdulbasit M, Ashinze P, Faturoti O, Ajagbe A, Ukoaka B, Aboderin G. The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine (Baltimore) 2023; 102:e35557. [PMID: 37904406 PMCID: PMC10615478 DOI: 10.1097/md.0000000000035557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Cognitive impairment in individuals with diabetes represents a multifaceted and increasingly prevalent health concern. This review critically examines the current evidence regarding the intricate relationship between diabetes and cognitive decline. It highlights the existing knowledge on the impact of diabetes on cognitive function, spanning from mild cognitive impairment to dementia, including vascular and Alzheimer dementia. The review underscores the need for a standardized diagnostic paradigm and explores research gaps, such as the implications of cognitive impairment in younger populations and various diabetes types. Furthermore, this review emphasizes the relevance of diabetes-related comorbidities, including hypertension and dyslipidemia, in influencing cognitive decline. It advocates for a comprehensive, interdisciplinary approach, integrating insights from neuroscience, endocrinology, and immunology to elucidate the mechanistic underpinnings of diabetes-related cognitive impairment. The second part of this review outlines prospective research directions and opportunities. It advocates for longitudinal studies to understand disease progression better and identifies critical windows of vulnerability. The search for accurate biomarkers and predictive factors is paramount, encompassing genetic and epigenetic considerations. Personalized approaches and tailored interventions are essential in addressing the substantial variability in cognitive outcomes among individuals with diabetes.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Kwara State, Nigeria
| | - Muili Abdulbasit
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Patrick Ashinze
- Saint Francis Catholic Hospital, Okpara Inland, Warri Catholic Diocesan Hospital Commission, Delta State, Nigeria
| | - Olamide Faturoti
- Department of Medicine and Surgery, University of Ilorin, Kwara State, Nigeria
| | - Abayomi Ajagbe
- Department of Anatomy, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Bonaventure Ukoaka
- Department of Internal Medicine, Asokoro District Hospital, Abuja, Nigeria
| | - Gbolahan Aboderin
- Department of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
10
|
Cheng J, Zheng H, Liu C, Jin J, Xing Z, Wu Y. Age-Associated UBE2O Reduction Promotes Neuronal Death in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221143. [PMID: 37182872 DOI: 10.3233/jad-221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly. Ubiquitin proteasome system (UPS) is critical for protein homeostasis, while the functional decline of UPS with age contributes to the pathogenesis of AD. Ubiquitin-conjugating enzyme E2O (UBE2O), an E2-E3 hybrid enzyme, is a major component of UPS. However, its role in AD pathogenesis has not been fully defined. OBJECTIVE We aimed to identify the age-associated expression of UBE2O and its role AD pathogenesis. METHODS Western blot analysis were used to assess expression of UBE2O in organs/tissues and cell lines. Immunofluorescence staining was performed to examine the cellular distribution of UBE2O. Neuronal death was determined by the activity of lactate dehydrogenase. RESULTS UBE2O is highly expressed in the cortex and hippocampus. It is predominantly expressed in neurons but not in glial cells. The peak expression of UBE2O is at postnatal day 17 and 14 in the cortex and hippocampus, respectively. Moreover its expression is gradually reduced with age. Importantly, UBE2O is significantly reduced in both cortex and hippocampus of AD mice. Consistently, overexpression of amyloid-β protein precursor (AβPP) with a pathogenic mutation (AβPPswe) for AD reduces the expression of UBE2O and promotes neuronal death, while increased expression of UBE2O rescues AβPPswe-induced neuronal death. CONCLUSION Our study indicates that age-associated reduction of UBE2O may facilitates neuronal death in AD, while increasing UBE2O expression or activity may be a potential approach for AD treatment by inhibiting neuronal death.
Collapse
Affiliation(s)
- Jing Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Huancheng Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Chenyu Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Alberta Institute, School of Mental Health and The Affiliated Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Jiabin Jin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Zhenkai Xing
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Nematullah M, Rashid F, Nimker S, Khan F. Protein Phosphatase 2A Regulates Phenotypic and Metabolic Alteration of Microglia Cells in HFD-Associated Vascular Dementia Mice via TNF-α/Arg-1 Axis. Mol Neurobiol 2023; 60:4049-4063. [PMID: 37017907 DOI: 10.1007/s12035-023-03324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphatase 2A (PP2A), the activity of which is dictated by the composition of its regulatory subunit, is strongly related to the progression of neurodegenerative disease. The potential role of PP2A on the phenotypic transition of microglial cells under obese conditions is poorly explored. An understanding of the role of PP2A and identification of regulatory subunits contributing to microglial phenotypic transitions in obese condition may serve as a therapeutic target for obesity-associated neurodegeneration. C57BL/6 mice were exposed to obese-associated vascular dementia conditions by performing unilateral common carotid artery occlusion on obese mice of microglial polarization and PP2A activity using flow cytometry, real-time PCR, western blotting, and immunoprecipitation enzymatic assay, followed identifications of PP2A regulatory subunits using LCMS and RT-PCR. Chronic HFD feeding significantly increased the populations of infiltrated macrophages, showing a high percentage of CD86+ in VaD mice, and the expression of pro-inflammatory cytokines, and we observed that PP2A modulates metabolic reprogramming of microglia by regulating OXPHOS/ECAR activity. Using Co-IP and LCMS, we identified the six specific regulatory subunits, namely PPP2R2A, PPP2R2D, PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E, that are associated with microglial-activation during obesity-associated-VaD. Interestingly, pharmacological up-regulation of PP2A more significantly suppressed the expression of TNF-alpha than other pro-inflammatory-cytokines and increased the expression of Arginase-1, suggesting that PP2A modulates microglial-phenotypic transitions through TNF-α/Arg-1 axis. Our present findings demonstrate microglial polarization in HFD associated with VaD, and point towards a therapeutic target by providing specific PP2A regulatory-subunits implicated in microglial activation during obesity-related-vascular-dementia.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shwetanjali Nimker
- Application Scientist, BD Biosciences India Pvt. Ltd, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
12
|
Sung JH, Ou Y, Barger SW. Amyloid β-Peptide Effects on Glucose Regulation Are Dependent on Apolipoprotein E Genotype. eNeuro 2023; 10:ENEURO.0376-22.2023. [PMID: 37163733 PMCID: PMC10135078 DOI: 10.1523/eneuro.0376-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023] Open
Abstract
The apolipoprotein E gene (APOE) confers the greatest genetic risk factor for Alzheimer's disease (AD), wherein the ε4 allele confers an elevated risk compared with the ε3 allele. Biological mechanisms that differ across these alleles have been explored in mouse models wherein the murine Apoe gene has undergone targeted replacement with sequences encoding human ApoE3 or ApoE4 (ApoE-TR mice). Such models have indicated that the two variants of ApoE produce differential effects on energy metabolism, including metabolic syndrome. However, glucose regulation has not been compared in ApoE-TR mice with and without amyloid β-peptide (Aβ) accumulation. We crossed ApoE3-TR and ApoE4-TR mice with a transgenic line that accumulates human Aβ1-42 In male ApoE3-TR mice, introduction of Aβ caused aberrations in glucose tolerance and in membrane translocation of astrocytic glucose transporter 1 (GLUT1). Phosphorylation of Tau at AD-relevant sites was correlated with glucose intolerance. These effects appeared independent of insulin dysregulation and were not observed in females. In ApoE4-TR mice, the addition of Aβ had no significant effects because of a trend toward perturbation of the baseline values.
Collapse
Affiliation(s)
- Jin Hee Sung
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Yang Ou
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205
| |
Collapse
|
13
|
Dybjer E, Kumar A, Nägga K, Engström G, Mattsson-Carlgren N, Nilsson PM, Melander O, Hansson O. Polygenic risk of type 2 diabetes is associated with incident vascular dementia: a prospective cohort study. Brain Commun 2023; 5:fcad054. [PMID: 37091584 PMCID: PMC10118265 DOI: 10.1093/braincomms/fcad054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Type 2 diabetes and dementia are associated, but it is unclear whether the two diseases have common genetic risk markers that could partly explain their association. It is also unclear whether the association between the two diseases is of a causal nature. Furthermore, few studies on diabetes and dementia have validated dementia end-points with high diagnostic precision. We tested associations between polygenic risk scores for type 2 diabetes, fasting glucose, fasting insulin and haemoglobin A1c as exposure variables and dementia as outcome variables in 29 139 adults (mean age 55) followed for 20-23 years. Dementia diagnoses were validated by physicians through data from medical records, neuroimaging and biomarkers in cerebrospinal fluid. The dementia end-points included all-cause dementia, mixed dementia, Alzheimer's disease and vascular dementia. We also tested causal associations between type 2 diabetes and dementia through two-sample Mendelian randomization analyses. Seven different polygenic risk scores including single-nucleotide polymorphisms with different significance thresholds for type 2 diabetes were tested. A polygenic risk score including 4891 single-nucleotide polymorphisms with a P-value of <5e-04 showed the strongest association with different outcomes, including all-cause dementia (hazard ratio 1.11; Bonferroni corrected P = 3.6e-03), mixed dementia (hazard ratio 1.18; Bonferroni corrected P = 3.3e-04) and vascular dementia cases (hazard ratio 1.28; Bonferroni corrected P = 9.6e-05). The associations were stronger for non-carriers of the Alzheimer's disease risk gene APOE ε4. There was, however, no significant association between polygenic risk scores for type 2 diabetes and Alzheimer's disease. Furthermore, two-sample Mendelian randomization analyses could not confirm a causal link between genetic risk markers of type 2 diabetes and dementia outcomes. In conclusion, polygenic risk of type 2 diabetes is associated with an increased risk of dementia, in particular vascular dementia. The findings imply that certain people with type 2 diabetes may, due to their genetic background, be more prone to develop diabetes-associated dementia. This knowledge could in the future lead to targeted preventive strategies in clinical practice.
Collapse
Affiliation(s)
- Elin Dybjer
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-21428 Malmö, Sweden
| | - Atul Kumar
- MultiPark: Multidisciplinary Research focused on Parkinson's disease, Lund University, Box 117, SE-22100 Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Skånes universitetssjukhus, VE Minnessjukdomar, SE-20502 Malmö, Sweden
| | - Katarina Nägga
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-21428 Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Skånes universitetssjukhus, VE Minnessjukdomar, SE-20502 Malmö, Sweden
- Department of Acute Internal Medicine and Geriatrics, Linköping University, SE-58183 Linköping, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-21428 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- MultiPark: Multidisciplinary Research focused on Parkinson's disease, Lund University, Box 117, SE-22100 Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Skånes universitetssjukhus, VE Minnessjukdomar, SE-20502 Malmö, Sweden
- Brain Injury After Cardiac Arrest Research Group, Lund University, Box 117, SE-22100 Lund, Sweden
- WCMM – Wallenberg Centre for Molecular Medicine, Lund University, Sölvegatan 19, BMC D11, SE-22184 Lund, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-21428 Malmö, Sweden
- EpiHealth: Epidemiology for Health Strategic Research Area, Lund University, SUS Malmö, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-21428 Malmö, Sweden
- EpiHealth: Epidemiology for Health Strategic Research Area, Lund University, SUS Malmö, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, SE-20502 Malmö, Sweden
- EXODIAB: Excellence in Diabetes Research in Sweden, Lund University, Box 117, SE-22100 Lund, Sweden
| | - Oskar Hansson
- MultiPark: Multidisciplinary Research focused on Parkinson's disease, Lund University, Box 117, SE-22100 Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Skånes universitetssjukhus, VE Minnessjukdomar, SE-20502 Malmö, Sweden
| |
Collapse
|
14
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
15
|
Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, de la Rosa A, Twohig D, Bengtsson T, Fu Y, Bu G, Bial G, Foquet L, Hammarstedt C, Strom S, Kannisto K, Raber J, Ellis E, Nielsen HM. Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice. Mol Psychiatry 2022; 27:3533-3543. [PMID: 35418601 PMCID: PMC9708568 DOI: 10.1038/s41380-022-01548-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer's disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Kalicharan Patra
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Lur Agirrezabala Nieto
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Joan Benedicto-Gras
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Simon Moussaud
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Andrés de la Rosa
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, 10691, Sweden
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Greg Bial
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | | | - Christina Hammarstedt
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Stephen Strom
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Kristina Kannisto
- Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, 17177, Sweden
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, and Division of Neuroscience, ONPPRC, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, (CLINTEC), Division of Transplantation surgery, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden.
| |
Collapse
|
16
|
Zarkasi KA, Abdul Murad NA, Ahmad N, Jamal R, Abdullah N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:647. [PMID: 35055468 PMCID: PMC8775550 DOI: 10.3390/ijerph19020647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Asians are more susceptible to type 2 diabetes mellitus (T2D) and its coronary heart disease (CHD) complications than the Western populations, possibly due to genetic factors, higher degrees of obesity, insulin resistance, and endothelial dysfunction that could occur even in healthy individuals. The genetic factors and their mechanisms, along with gene-gene and gene-environment interactions associated with CHD in T2D Asians, are yet to be explored. Therefore, the objectives of this paper were to review the current evidence of genetic factors for CHD, summarize the proposed mechanisms of these genes and how they may associate with CHD risk, and review the gene-gene and gene-environment interactions in T2D Asians with CHD. The genetic factors can be grouped according to their involvement in the energy and lipoprotein metabolism, vascular and endothelial pathology, antioxidation, cell cycle regulation, DNA damage repair, hormonal regulation of glucose metabolism, as well as cytoskeletal function and intracellular transport. Meanwhile, interactions between single nucleotide polymorphisms (SNPs) from different genes, SNPs within a single gene, and genetic interaction with environmental factors including obesity, smoking habit, and hyperlipidemia could modify the gene's effect on the disease risk. Collectively, these factors illustrate the complexities of CHD in T2D, specifically among Asians.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Biochemistry Unit, Preclinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia;
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| |
Collapse
|
17
|
Cho S, Lee H, Seo J. Impact of Genetic Risk Factors for Alzheimer's Disease on Brain Glucose Metabolism. Mol Neurobiol 2021; 58:2608-2619. [PMID: 33479841 DOI: 10.1007/s12035-021-02297-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects more than 30 million people worldwide. Despite growing knowledge of AD pathophysiology, a complete understanding of the pathogenic mechanisms underpinning AD is lacking, and there is currently no cure for AD. Extant literature suggests that AD is a polygenic and multifactorial disease underscored by complex and dynamic pathogenic mechanisms. Despite extensive research and clinical trials, there has been a dearth of novel drugs for AD treatment on the market since memantine in 2003. This lack of therapeutic success has directed the entire research community to approach the disease from a different angle. In this review, we discuss growing evidence for the close link between altered glucose metabolism and AD pathogenesis by exploring how genetic risk factors for AD are associated with dysfunctional glucose metabolism. We also discuss modification of genes responsible for metabolic pathways implicated in AD pathology.
Collapse
Affiliation(s)
- Sukhee Cho
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Hyein Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|