1
|
Szymczak M, Golec P. Long-Term Effectiveness of Engineered T7 Phages Armed with Silver Nanoparticles Against Escherichia coli Biofilm. Int J Nanomedicine 2024; 19:10097-10105. [PMID: 39381027 PMCID: PMC11460280 DOI: 10.2147/ijn.s479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The escalating threat of antibiotic-resistant bacteria, particularly those forming biofilm structures, underscores the urgent need for alternative treatment strategies. Bacteriophages have emerged as promising agents for combating bacterial infections, especially those associated with biofilm formation. However, the efficacy of phage therapy can be limited by the development of bacterial resistance and biofilm regrowth. Interestingly, phages could be combined with other agents, such as metal nanoparticles, to enhance their antibacterial effectiveness. Since the therapeutic strategy of using phages and metal nanoparticles has been developed relatively recently, evaluating its efficacy under various conditions is essential, with a particular focus on the duration of activity. This study tested the hypothesis that a novel approach to combating bacterial biofilms, based on phages armed with silver nanoparticles (AgNPs), would exhibit enhanced activity over an extended period after application. In this work, we investigated the potential of engineered T7 phages armed with AgNPs for eradicating Escherichia coli biofilm. We demonstrated that such biomaterial exhibits sustained antimicrobial activity even after prolonged exposure. Compared to phages alone or AgNPs alone, the biomaterial significantly enhances biofilm eradication, particularly after 48 hours of treatment. These findings highlight the potential of synergistic phage-nanoparticle strategies for combatting biofilm-associated infections.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Xiao C, Huang Y, Cui X, Wei Q, Ji Q, Liu Y, Fei S, Pan Y, Xu X, Pan H, Bao G. Adjuvant Efficacy of the ECMS-Oil on Immune Responses against Bordetella bronchiseptica in Mice through the TLR2/MyD88/NF-κB Pathway. J Immunol Res 2023. [DOI: 10.1155/2023/1011659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Bordetella infection can be efficiently prevented through vaccination. The current study investigated the effects of an extract of Cochinchina momordica seed (ECMS) combined with oil on the immune responses to the inactivated Bordetella vaccine in mice. Serum IgG and IgG1 level was significantly increased in ECMS-oil group compared to any other group (
) 2 weeks after immunization, while groups ECMS200 μg/400 μg-oil had a markedly higher level of serum IgG2b and IgG3 than any other groups (
). Moreover, lipopolysaccharide/ConA-stimulated proliferation of splenocytes was significantly enhanced in ECMS 400 μg-oil immunized mice in comparison with mice in any other group (
). RT-PCR assay revealed that while ECMS800 μg-oil group had significantly higher levels of serum IL-4, IL-10, Toll-like receptor (TLR)2, and IL-1 beta than any other group (
), the levels of serum IL-2, IL-4, and IL-10 were markedly increased in ECMS 400 μg-oil group as compared to any other groups (
). Blood analysis showed that ECMS800 μg-oil and oil groups had a significantly higher number of immunocytes than any other groups (
). There were significant differences in the number of IgG+, IgG2b+, and IgA+ cells in the lung between ECMS800 μg-oil group and any other groups (
). Western blot analysis demonstrated that stimulation with ECMS 25 μg/mL or 50 ng/mL led to a significant increase in the expression of TLR2, MyD88, and NF-κB in Raw264.7 cells (
). Compared with any other group, the expression of MyD88 was markedly increased in the cells stimulated with ECMS 50 ng/mL, as indicated by the RT-PCR analysis (
). Overall, we observed that ECMS-oil efficiently enhanced the humoral or cellular immune responses against Bordetella and suggested that the mechanism of adjuvant activity of ECMS-oil might involve TLR2/MyD88/NF-κB signaling pathway.
Collapse
|
4
|
Zhang K, Wang S, Yao D, Zhang X, Zhang Q, Liu W, Li Y, Yin Y, An S, Zhang R, Zhang Z. Aerobic and facultative anaerobic Klebsiella pneumoniae strains establish mutual competition and jointly promote Musca domestica development. Front Immunol 2023; 14:1102065. [PMID: 36875080 PMCID: PMC9982019 DOI: 10.3389/fimmu.2023.1102065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction The gut microenvironment in housefly harbors a rich and diverse microbial community which plays a crucial role in larval development. However, little is known about the impact of specific symbiotic bacteria on larval development as well as the composition of the indigenous gut microbiota of housefly. Methods In the present study, two novel strains were isolated from housefly larval gut, i.e., Klebsiella pneumoniae KX (aerobe) and K. pneumoniae KY (facultative anaerobe). Moreover, the bacteriophages KXP/KYP specific for strains KX and KY were used to analyse the effects of K. pneumoniae on larval development. Results Our results showed that dietary supplementation with K. pneumoniae KX and KY individually promoted housefly larval growth. However, no significant synergistic effect was observed when the two bacterial strains were administered in combination. In addition, using high-throughput sequencing, it was demonstrated that the abundance of Klebsiella increased whereas that of Provincia, Serratia and Morganella decreased when housefly larvae received supplementation with K. pneumoniae KX, KY or the KX-KY mixture. Moreover, when used combined, K. pneumoniae KX/KY inhibited the growth of Pseudomonas and Providencia. When the abundance of both bacterial strains simultaneously increased, a balance in total bacterial abundance was reached. Discussion Thus, it can be assumed that strains K. pneumoniae KX and KY maintain an equilibrium to facilitate their development in housefly gut, by establishing competition but also cooperation with each other to maintain the constant composition of gut bacteria in housefly larvae. Thus, our findings highlight the essential role of K. pneumoniae in regulating the composition of the gut microbiota in insects.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,School of Life Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Dawei Yao
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qian Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Wenjuan Liu
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yansong Yin
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Sha An
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Zhong Zhang
- School of life Science, Weifang Medical University, Weifang, Shandong, China.,Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Alanazi F, Nour I, Hanif A, Al-Ashkar I, Aljowaie RM, Eifan S. Novel findings in context of molecular diversity and abundance of bacteriophages in wastewater environments of Riyadh, Saudi Arabia. PLoS One 2022; 17:e0273343. [PMID: 35980993 PMCID: PMC9387821 DOI: 10.1371/journal.pone.0273343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
The diversity among bacteriophages depends on different factors like ecology, temperature conditions and genetic pool. Current study focused on isolation, identification and diversity of phages from 34 sewage water samples collected from two different wastewater treatment plants (WWTPs), King Saud University wastewater treatment plants (KSU-WWTP) and Manfoha wastewater treatment plants (MN-WWTP) in Riyadh, Saudi Arabia. Samples were analyzed by PCR and Next Generation Sequencing (NGS). Siphoviridae, Podoviridae and Myoviridae families were detected by family-specific PCR and highest prevalence of Myoviridae 29.40% was found at MN-WWTP followed by 11.76% at KSU-WWTP. Siphoviridae was detected 11.76% at MN-WWTP and 5.88% at KSU-WWTP. Lowest prevalence for Podoviridae family (5.88%) was recorded at MN-WWTP. Significant influence of temporal variations on prevalence of Myoviridae and Siphoviridae was detected in both WWTP and MN-WWTP, respectively. Highest phage prevalence was obtained in August (75%), followed by September (50%). Highest phage prevalence was recorded at a temperature range of 29–33°C. Significant influence of temperature on the prevalence of Myoviridae phages was detected at MN-WWTP. Four bacteriophages with various abundance levels were identified by NGS. Cronobacter virus Esp2949-1 was found first time with highest abundance (4.41%) in wastewater of Riyadh. Bordetella virus BPP1 (4.14%), Dickeya virus Limestone (1.55%) and Ralstonia virus RSA1 (1.04%) were also detected from samples of MN-WWTP. Highest occurrence of Bordetella virus BPP1 (67%) and (33.33%) was recorded at KSU-WWTP and MN-WWTP, respectively. Highest Bordetella virus BPP1 occurrence was recorded in September (50%) followed by August (40%). The findings of study showed new insights of phage diversity from wastewater sources and further large-scale data studies are suggested for comprehensive understanding.
Collapse
Affiliation(s)
- Fahad Alanazi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reem M. Aljowaie
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
6
|
Grygorcewicz B, Roszak M, Rakoczy R, Augustyniak A, Konopacki M, Jabłońska J, Serwin N, Cecerska-Heryć E, Kordas M, Galant K, Dołęgowska B. PhageScore-based analysis of Acinetobacter baumannii infecting phages antibiotic interaction in liquid medium. Arch Microbiol 2022; 204:421. [PMID: 35748948 DOI: 10.1007/s00203-022-03020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/31/2023]
Abstract
The growing interest in bacteriophages and antibiotics' combined use poses new challenges regarding this phenomenon's accurate description. This study aimed to apply the PhageScore methodology to assess the phage-antibiotic combination activity in liquid bacterial culture. For this purpose, previously described Acinetobacter infecting phages vB_AbaP_AGC01, Aba-1, and Aba-4 and antibiotics (gentamicin, ciprofloxacin, meropenem, norfloxacin, and fosfomycin) were used to obtain a lysis curve of bacteriophages under antibiotic pressure. The experimental data were analyzed using the Fractional Inhibitory Concentration Index (FICI) and PhageScore methodology. The results obtained by this method clearly show differences between phage lytic activity after antibiotic addition. Thus, we present the potential use of the PhageScore method as a tool for characterizing the phage antibiotic synergy in liquid culture. Further, the optimization of the PhageScore for this purpose can help compare antibiotics and their outcome on bacteriophage lytic activity.
Collapse
Affiliation(s)
- Bartłomiej Grygorcewicz
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland. .,Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland.
| | - Marta Roszak
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland
| | - Maciej Konopacki
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.,Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland
| | - Natalia Serwin
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065, Szczecin, Poland
| | - Katarzyna Galant
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Chair of Microbiology, Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
7
|
Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface. Curr Issues Mol Biol 2022; 44:1316-1325. [PMID: 35723311 PMCID: PMC8947294 DOI: 10.3390/cimb44030088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t50 and t75 of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10−9 mL × min−1 to 1.64 × 10−8 mL × min−1. The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10−9 mL × min−1 to 7.34 × 10−9 mL × min−1. Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.
Collapse
|
8
|
Ely B, Berrios L, Thomas Q. S2B, a Temperate Bacteriophage That Infects Caulobacter Crescentus Strain CB15. Curr Microbiol 2022; 79:98. [PMID: 35150327 DOI: 10.1007/s00284-022-02799-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
The Caulobacter crescentus strain CB15 has been the basis of numerous studies designed to characterize the biphasic life cycle of this bacterium. Here we describe a newly isolated podovirus, designated S2B, which is capable of integrating into the CB15 chromosome by recombining with the 3'-end of a particular tRNA-ser gene. In addition, we show that S2B is a representative of a family of closely related prophages that are present in the genomes of characterized strains from several Alphaproteobacteria genera. In contrast, only distantly related bacteriophage genomes are present in the GenBank database. The 42,846 bp S2B genome includes 262 bp terminal repeats, and it contains 62 genes of which 45 code for proteins of unknown function. Proteins with predicted functions include a T7 DNA polymerase, a T3/T7 RNA polymerase, and a T7 helicase/primase suggesting that S2B is part of the Studiervirinae subfamily of the Autographiviridae family.
Collapse
Affiliation(s)
- Bert Ely
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, US.
| | - Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, 94305, US
| | - Quill Thomas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, US
| |
Collapse
|
9
|
Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci 2022; 23:ijms23031274. [PMID: 35163197 PMCID: PMC8836238 DOI: 10.3390/ijms23031274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Problems connected with biofilm-related infections and antibiotic resistance necessitate the investigation and development of novel treatment strategies. Given their unique characteristics, one of the most promising alternatives to conventional antibiotics are bacteriophages. In the in vitro and in vivo larva model study, we demonstrate that phages vB_SauM-A, vB_SauM-C, and vB_SauM-D are effective antibiofilm agents. The exposure of biofilm to phages vB_SauM-A and vB_SauM-D led to 2-3 log reductions in the colony-forming unit number in most of the multidrug-resistant S. aureus strains. It was found that phage application reduced the formed biofilms independently of the used titer. Moreover, the study demonstrated that bacteriophages are more efficient in biofilm biomass removal and reduction in staphylococci count when compared to the antibiotics used. The scanning electron microscopy analysis results are in line with colony forming unit (CFU) counting but not entirely consistent with crystal violet (CV) staining. Additionally, phages vB_SauM-A, vB_SauM-C, and vB_SauM-D can significantly increase the survival rate and extend the survival time of Galleria mellonella larvae.
Collapse
|
10
|
Biosca EG, Català-Senent JF, Figàs-Segura À, Bertolini E, López MM, Álvarez B. Genomic Analysis of the First European Bacteriophages with Depolymerase Activity and Biocontrol Efficacy against the Phytopathogen Ralstonia solanacearum. Viruses 2021; 13:v13122539. [PMID: 34960808 PMCID: PMC8703784 DOI: 10.3390/v13122539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.
Collapse
Affiliation(s)
- Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Correspondence:
| | - José Francisco Català-Senent
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Centro de Investigación Príncipe Felipe, Unidad de Bioinformática y Bioestadística, 46012 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
| | - Edson Bertolini
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain;
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28800 Alcalá de Henares, Spain
| |
Collapse
|
11
|
Khan MSI, Gao X, Liang K, Mei S, Zhan J. Virulent Drexlervirial Bacteriophage MSK, Morphological and Genome Resemblance With Rtp Bacteriophage Inhibits the Multidrug-Resistant Bacteria. Front Microbiol 2021; 12:706700. [PMID: 34504479 PMCID: PMC8421802 DOI: 10.3389/fmicb.2021.706700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage-host interactions are likely to have the most critical aspect of phage biology. Phages are the most abundant and ubiquitous infectious acellular entities in the biosphere, where their presence remains elusive. Here, the novel Escherichia coli lytic bacteriophage, named MSK, was isolated from the lysed culture of E. coli C (phix174 host). The genome of phage MSK was sequenced, comprising 45,053 bp with 44.8% G + C composition. In total, 73 open reading frames (ORFs) were predicted, out of which 24 showed a close homology with known functional proteins, including one tRNA-arg; however, the other 49 proteins with no proven function in the genome database were called hypothetical. Electron Microscopy and genome characterization have revealed that MSK phage has a rosette-like tail tip. There were, in total, 46 ORFs which were homologous to the Rtp genome. Among these ORFs, the tail fiber protein with a locus tag of MSK_000019 was homologous to Rtp 43 protein, which determines the host specificity. The other protein, MSK_000046, encodes lipoprotein (cor gene); that protein resembles Rtp 45, responsible for preventing adsorption during cell lysis. Thirteen MSK structural proteins were identified by SDS-PAGE analysis. Out of these, 12 were vital structural proteins, and one was a hypothetical protein. Among these, the protein terminase large (MSK_000072) subunit, which may be involved in DNA packaging and proposed packaging strategy of MSK bacteriophage genome, takes place through headful packaging using the pac-sites. Biosafety assessment of highly stable phage MSK genome analysis has revealed that the phage did not possess virulence genes, which indicates proper phage therapy. MSK phage potentially could be used to inhibit the multidrug-resistant bacteria, including AMP, TCN, and Colistin. Further, a comparative genome and lifestyle study of MSK phage confirmed the highest similarity level (87.18% ANI). These findings suggest it to be a new lytic isolated phage species. Finally, Blast and phylogenetic analysis of the large terminase subunit and tail fiber protein put it in Rtp viruses' genus of family Drexlerviridae.
Collapse
Affiliation(s)
- Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangzheng Gao
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Are Bordetella bronchiseptica Siphoviruses (Genus Vojvodinavirus) Appropriate for Phage Therapy-Bacterial Allies or Foes? Viruses 2021; 13:v13091732. [PMID: 34578315 PMCID: PMC8471281 DOI: 10.3390/v13091732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica is a respiratory animal pathogen that shows growing resistance to commonly used antibiotics, which has necessitated the examination of new antimicrobials, including bacteriophages. In this study, we examined the previously isolated and partially characterized B. bronchiseptica siphoviruses of the genus Vojvodinavirus (LK3, CN1, CN2, FP1 and MW2) for their ability to inhibit bacterial growth and biofilm, and we examined other therapeutically important properties through genomic analysis and lysogeny experiments. The phages inhibited bacterial growth at a low multiplicity of infection (MOI = 0.001) of up to 85% and at MOI = 1 for >99%. Similarly, depending on the phages and MOIs, biofilm formation inhibition ranged from 65 to 95%. The removal of biofilm by the phages was less efficient but still considerably high (40–75%). Complete genomic sequencing of Bordetella phage LK3 (59,831 bp; G + C 64.01%; 79 ORFs) showed integrase and repressor protein presence, indicating phage potential to lysogenize bacteria. Lysogeny experiments confirmed the presence of phage DNA in bacterial DNA upon infection using PCR, which showed that the LK3 phage forms more or less stable lysogens depending on the bacterial host. Bacterial infection with the LK3 phage enhanced biofilm production, sheep blood hemolysis, flagellar motility, and beta-lactam resistance. The examined phages showed considerable anti-B. bronchiseptica activity, but they are inappropriate for therapy because of their temperate nature and lysogenic conversion of the host bacterium.
Collapse
|
13
|
|
14
|
Antibiotics Act with vB_AbaP_AGC01 Phage against Acinetobacter baumannii in Human Heat-Inactivated Plasma Blood and Galleria mellonella Models. Int J Mol Sci 2020; 21:ijms21124390. [PMID: 32575645 PMCID: PMC7352404 DOI: 10.3390/ijms21124390] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing multidrug resistance has led to renewed interest in phage-based therapy. A combination of the bacteriophages and antibiotics presents a promising approach enhancing the phage therapy effectiveness. First, phage candidates for therapy should be deeply characterized. Here we characterize the bacteriophage vB_AbaP_AGC01 that poses antibacterial activity against clinical Acinetobacter baumannii strains. Moreover, besides genomic and phenotypic analysis our study aims to analyze phage–antibiotic combination effectiveness with the use of ex vivo and in vivo models. The phage AGC01 efficiently adsorbs to A. baumannii cells and possesses a bacteriolytic lifecycle resulting in high production of progeny phages (317 ± 20 PFU × cell−1). The broad host range (50.27%, 93 out of 185 strains) against A. baumannii isolates and the inability of AGC01 to infect other bacterial species show its high specificity. Genomic analysis revealed a high similarity of the AGC01 genome sequence with that of the Friunavirus genus from a subfamily of Autographivirinae. The AGC01 is able to significantly reduce the A. baumannii cell count in a human heat-inactivated plasma blood model (HIP-B), both alone and in combination with antibiotics (gentamicin (GEN), ciprofloxacin (CIP), and meropenem (MER)). The synergistic action was observed when a combination of phage treatment with CIP or MER was used. The antimicrobial activity of AGC01 and phage-antibiotic combinations was confirmed using an in vivo larva model. This study shows the greatest increase in survival of G. mellonella larvae when the combination of phage (MOI = 1) and MER was used, which increased larval survival from 35% to 77%. Hence, AGC01 represents a novel candidate for phage therapy. Additionally, our study suggests that phages and antibiotics can act synergistically for greater antimicrobial effect when used as combination therapy.
Collapse
|
15
|
Grygorcewicz B, Wojciuk B, Roszak M, Łubowska N, Błażejczak P, Jursa-Kulesza J, Rakoczy R, Masiuk H, Dołęgowska B. Environmental Phage-Based Cocktail and Antibiotic Combination Effects on Acinetobacter baumannii Biofilm in a Human Urine Model. Microb Drug Resist 2020; 27:25-35. [PMID: 32543337 DOI: 10.1089/mdr.2020.0083] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) bacterial infections poses a catastrophic threat to medicine. The development of phage-based therapy combined with antibiotics might be an advantageous weapon in the arms race between human and MDR bacteria. A cocktail composed of the MDR Acinetobacter baumannii infecting bacteriophages with high lytic activity was used in combination with antibiotics to destroy a bacterial biofilm in human urine. A. baumannii exhibited varying susceptibility to the host range of bacteriophages used in this study, ranging from 56% to 84%. This study demonstrated that bacteriophages could reduce biofilm biomass in a human urine model, and some of the antibiotics commonly used in the treatment of urinary tract infection (UTI) act synergistically with phage cocktails. Additionally, the combined treatment showed a significantly greater reduction of biofilm biomass and clearance of persister cells.
Collapse
Affiliation(s)
- Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Natalia Łubowska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Piotr Błażejczak
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Jursa-Kulesza
- Department of Medical Microbiology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology, and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|