1
|
Tang L, Li D, Wang J, Su B, Tian Y. Ambient air pollution, genetic risk and telomere length in UK biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:845-852. [PMID: 37550565 DOI: 10.1038/s41370-023-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Telomere length (TL) is a biomarker of genomic aging. The evidence on the association between TL and air pollution was inconsistent. Besides, the modification effect of genetic susceptibility on the air pollution-TL association remains unknown. OBJECTIVE We aimed to evaluate the association of ambient air pollution with TL and further assess the modification effect of genetic susceptibility. METHODS 433,535 participants with complete data of TL and air pollutants in UK Biobank were included. Annual average exposure of NO2, NOx, PM10 and PM2.5 was estimated by applying land use regression models. Genetic risk score (GRS) was constructed using reported telomere-related SNPs. Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR). Multivariable linear regression models were employed to conduct associational analyses. RESULTS Categorical exposure models and RCS models both indicated U-shaped (for NO2 and NOx) and L-shaped (for PM10 and PM2.5) correlations between air pollution and TL. In comparison to the lowest quartile, the 2nd and 3rd quartile of NO2 (q2: -1.3% [-2.1%, -0.4%]; q3: -1.2% [-2.0%, -0.3%], NOx (q2: -1.3% [-2.1%, -0.5%]; q3: -1.4% [-2.2%, -0.5%]), PM2.5 (q2: -0.8% [-1.7%, 0.0%]; q3: -1.3% [-2.2%, -0.5%]), and the third quartile of PM10 (q3: -1.1% [-1.9%, -0.2%]) were inversely associated with TL. The highest quartile of NO2 was positively correlated with TL (q4: 1.0% [0.0%, 2.0%]), whereas the negative correlation between the highest quartile of other pollutants and TL was also attenuated and no longer significant. In the genetic analyses, synergistic interactions were observed between the 4th quartile of three air pollutants (NO2, NOx, and PM2.5) and genetic risk. IMPACT STATEMENT Our study for the first time revealed a non-linear trend for the association between air pollution and telomere length. The genetic analyses suggested synergistic interactions between air pollution and genetic risk on the air pollution-TL association. These findings may shed new light on air pollution's health effects, offer suggestions for identifying at-risk individuals, and provide hints regarding further investigation into gene-environment interactions.
Collapse
Affiliation(s)
- Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No.31, Beijige-3, Dongcheng District, 100730, Beijing, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
| |
Collapse
|
2
|
Turkistani A, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Al‐Windy S, Batiha GE. Pharmacological characterization of the antidiabetic drug metformin in atherosclerosis inhibition: A comprehensive insight. Immun Inflamm Dis 2024; 12:e1346. [PMID: 39092773 PMCID: PMC11295104 DOI: 10.1002/iid3.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a progressive disease that interferes with blood flow, leading to cardiovascular complications such as hypertension, ischemic heart disease, ischemic stroke, and vascular ischemia. The progression of AS is correlated with inflammation, oxidative stress, and endothelial dysfunction. Various signaling pathways, like nuclear erythroid-related factor 2 (Nrf2) and Kruppel-like factor 2 (KLF2), are involved in the pathogenesis of AS. Nrf2 and KLF2 have anti-inflammatory and antioxidant properties. Thus, activation of these pathways may reduce the development of AS. Metformin, an insulin-sensitizing drug used in the management of type 2 diabetes mellitus (T2DM), increases the expression of Nrf2 and KLF2. AS is a common long-term macrovascular complication of T2DM. Thus, metformin, through its pleiotropic anti-inflammatory effect, may attenuate the development and progression of AS. AIMS Therefore, this review aims to investigate the possible role of metformin in AS concerning its effect on Nrf2 and KLF2 and inhibition of reactive oxygen species (ROS) formation. In addition to its antidiabetic effect, metformin can reduce cardiovascular morbidities and mortalities compared to other antidiabetic agents, even with similar blood glucose control by the Nrf2/KLF2 pathway activation. CONCLUSION In conclusion, metformin is an effective therapeutic strategy against the development and progression of AS, mainly through activation of the KLF2/Nrf2 axis.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of MedicineTaif UniversityTaifSaudi Arabia
| | - Haydar M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
- Department of Clinical Pharmacology and MedicineJabir ibn Hayyan Medical UniversityKufaIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityPunjabIndia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Salah Al‐Windy
- Department of Biology, College of ScienceBaghdad UniversityBaghdadIraq
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
4
|
Woźniak A, Satała J, Gorzelak‐Pabiś P, Pawlos A, Broncel M, Kaźmierski P, Woźniak E. OxLDL as a prognostic biomarker of plaque instability in patients qualified for carotid endarterectomy. J Cell Mol Med 2024; 28:e18459. [PMID: 39039803 PMCID: PMC11263466 DOI: 10.1111/jcmm.18459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/24/2024] Open
Abstract
Atherosclerotic plaque instability increases the risk of stroke. As such, determining the nature of an instability atherosclerotic plaque may speed up qualification for carotid endarterectomy (CEA), thus reducing the risk of acute vascular events. The aim of the study was to determine the diagnostic value of oxidized LDL cholesterol (ox-LDL), matrix metalloproteinase 9 (MMP-9) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in serum as a prognostic markers of instability atherosclerotic plaques. Serum was collected from 67 patients who underwent CEA in accordance with the qualification criteria. The levels of ox-LDL, MMP-9 and 8-OHdG were assessed by ELISA. The predictive value of the markers was determined based on an ROC curve, and the cut-off points with the highest sensitivity and specificity were determined. Patients with unstable atherosclerotic plaque had significantly higher serum ox-LDL, MMP-9 and 8-OHdG values. It was found that in patients before CEA, ox-LDL >31.4 ng/mL was associated with an 82.5% probability of unstable atherosclerotic plaque, MMP-9 >113.1 ng/mL with 78.6%, and 8-OHdG >2.15 ng/mL with 64.7%. Multivariate regression analysis found ox-LDL to be an independent factor associated with plaque instability. Patients with unstable plaques tend to have higher serum levels of ox-LDL, MMP-9 and 8-OHdG compared to those with stable plaques. The optimal cut-off point for ox-LDL (AUC 0.86, p <0.0001) was 31.14 ng/mL, with 91.18% sensitivity and 78.79% specificity. The high sensitivity and specificity of ox-LDL suggests that it can be used as an independent marker of plaque instability.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Joanna Satała
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Paulina Gorzelak‐Pabiś
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Agnieszka Pawlos
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Piotr Kaźmierski
- Department of Vascular, General, and Oncologic SurgeryMedical University of LodzLodzPoland
| | - Ewelina Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| |
Collapse
|
5
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
6
|
Sanchez M, Kannengiesser C, Hoang S, Potier L, Fumeron F, Venteclef N, Scheen A, Gautier JF, Hadjadj S, Marre M, Roussel R, Mohammedi K, Velho G. Leukocyte telomere length, allelic variations in related genes and risk of coronary heart disease in people with long-standing type 1 diabetes. Cardiovasc Diabetol 2022; 21:206. [PMID: 36221106 PMCID: PMC9554968 DOI: 10.1186/s12933-022-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Type 1 diabetes is associated with accelerated vascular aging and advanced atherosclerosis resulting in increased rates of cardiovascular disease and premature death. We evaluated associations between Leukocyte telomere length (LTL), allelic variations (SNPs) in LTL-related genes and the incidence of coronary heart disease (CHD) in adults with long-standing type 1 diabetes. Methods We assessed associations of LTL, measured at baseline by RT–PCR, and of SNPs in 11 LTL-related genes with the risk of coronary heart disease (CHD: myocardial infarction or coronary revascularization) and all-cause death during follow-up in two multicenter French-Belgian prospective cohorts of people with long-standing type 1 diabetes. Results In logistic and Cox analyses, the lowest tertile of LTL distribution (short telomeres) at baseline was associated with the prevalence of myocardial infarction at baseline and with increased risk of CHD (Hazard ratio 3.14 (1.39–7.70), p = 0.005, for shorter vs longer tertile of LTL) and all-cause death (Hazard ratio 1.63 (95% CI 1.04–2.55), p = 0.03, for shorter vs combined intermediate and longer tertiles of LTL) during follow-up. Allelic variations in six genes related to telomere biology (TERC, NAF1, TERT, TNKS, MEN1 and BICD1) were also associated with the incidence of CHD during follow-up. The associations were independent of sex, age, duration of diabetes, and a range of relevant confounding factors at baseline. Conclusions Our results suggest that short LTL is an independent risk factor for CHD in people with type 1 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01635-0.
Collapse
Affiliation(s)
- Manuel Sanchez
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France. .,UFR de Médecine, Université Paris Cité, Paris, France. .,Department of Geriatrics, Assistance Publique - Hôpitaux de Paris, Bichat University Hospital, 46 rue Henri Huchard, 75018, Paris, France.
| | - Caroline Kannengiesser
- UFR de Médecine, Université Paris Cité, Paris, France.,Department of Genetics, Assistance Publique - Hôpitaux de Paris, DHU FIRE, Bichat Hospital, Paris, France
| | - Sophie Hoang
- Department of Geriatrics, Charles-Foix University Hospital, Vitry sur Seine, France
| | - Louis Potier
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, DHU FIRE, Bichat Hospital, Paris, France
| | - Frédéric Fumeron
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Nicolas Venteclef
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - André Scheen
- Department of Diabetology, Endocrinology and Nutrition, Sart Tilman University Hospital, Liège, Belgium
| | - Jean-François Gautier
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, Lariboisière University Hospital, Paris, France
| | - Samy Hadjadj
- Institut du Thorax, INSERM, CNRS, CHU Nantes, Université de Nantes, Nantes, France
| | - Michel Marre
- Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Ronan Roussel
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France.,UFR de Médecine, Université Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, DHU FIRE, Bichat Hospital, Paris, France
| | - Kamel Mohammedi
- INSERM U1034, Bordeaux University and Hospital, Bordeaux, France
| | - Gilberto Velho
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
8
|
Niveta JPS, Kumar MA, Parvathi VD. Telomere attrition and inflammation: the chicken and the egg story. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractThe challenge to improve human life span has progressed with the advent of health care services and technologies. This improvement poses a new challenge of an associated wave of diseases and pathologies that have not been observed or experienced. This has led to rise in geriatric population who are currently facing health challenges that needs to be addressed by the research community. This review focuses primarily on two mechanisms that have contributed to aging and associated pathologies: telomere attrition and inflammatory insults. A strong interplay appears to exist between telomere attrition and inflammation, and this could be the basis of many pathologies associated with increasing age. This creates a scientific dilemma as to what comes first: telomere attrition or inflammation. This review will enthuse the reader to the underlying molecules and mechanisms associated with telomere attrition and inflammation and their contribution to aging.
Collapse
|
9
|
Leukocyte Telomere Length as a Molecular Biomarker of Coronary Heart Disease. Genes (Basel) 2022; 13:genes13071234. [PMID: 35886017 PMCID: PMC9318544 DOI: 10.3390/genes13071234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background. This work is a review of preclinical and clinical studies of the role of telomeres and telomerase in the development and progression of coronary heart disease (CHD). Materials and methods. A search for full-text publications (articles, reviews, meta-analyses, Cochrane reviews, and clinical cases) in English and Russian was carried out in the databases PubMed, Oxford University Press, Scopus, Web of Science, Springer, and E-library electronic library using keywords and their combinations. The search depth is 11 years (2010–2021). Results. The review suggests that the relative leukocyte telomere length (LTL) is associated with the development of socially significant and widespread cardiovascular diseases such as CHD and essential hypertension. At the same time, the interests of researchers are mainly focused on the study of the relative LTL in CHD. Conclusions. Despite the scientific and clinical significance of the analyzed studies of the relative length of human LTL as a biological marker of cardiovascular diseases, their implementation in real clinical practice is difficult due to differences in the design and methodology of the analyzed studies, as well as differences in the samples by gender, age, race, and ethnicity. The authors believe that clinical studies of the role of the relative length of leukocyte telomeres in adult patients with coronary heart disease are the most promising and require large multicenter studies with a unified design and methodology.
Collapse
|
10
|
Li Y, Wang Z. Interleukin 32 participates in cardiomyocyte‑induced oxidative stress, inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway. Exp Ther Med 2022; 24:567. [PMID: 35978933 PMCID: PMC9366315 DOI: 10.3892/etm.2022.11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuanyuan Li
- Department of Cardiovascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhongyan Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
11
|
Qin L, Li L, Fan H, Gu Y, He W, Zhang K, Sun Y, Zhao W, Niu X, Wei C, Li L, Wang H. Longitudinal Associations Between Serum Bilirubin Level and Carotid Atherosclerosis Plaque in a Health Screening Population. Angiology 2022; 74:452-460. [PMID: 35759358 DOI: 10.1177/00033197221110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to determine the relationship between bilirubin levels and carotid atherosclerosis (CAS) in the health screening population. After propensity score matching, this retrospective cohort study included 4360 subjects who underwent health examinations regularly in Hebei General Hospital between January 2010 and December 2019 and had no carotid plaque at baseline. After an average follow-up of 26.76 months, the main endpoint Cox regression analysis of carotid plaques was performed. After adjusting the confounding factors, Cox regression analysis showed that when serum total bilirubin (TBIL) and unconjugated bilirubin (UCB) increased by 1 standard deviation (SD), the risk of carotid plaque decreased by 7.30% (95% confidence interval (CI): 2.80-11.60%) and 15.70% (95% CI: 11.40-19.80%), respectively. When conjugated bilirubin (CB) increased by 1 SD, the risk of carotid plaques increased by 24.3% (95% CI: 19.7-29.0%). TBIL and UCB levels were negatively associated with CAS, and CB levels were positively associated with CAS.
Collapse
Affiliation(s)
- Lu Qin
- Graduate school, 12553Hebei Medical University, Shijiazhuang, China.,Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Lin Li
- Graduate school, 12553Hebei Medical University, Shijiazhuang, China.,Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Fan
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Yongsheng Gu
- Graduate school, 12553Hebei Medical University, Shijiazhuang, China.,Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Weiliang He
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Kaihua Zhang
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Yingru Sun
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Wannian Zhao
- Graduate school, 12553Hebei Medical University, Shijiazhuang, China.,Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Xiaoli Niu
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Ci Wei
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Litao Li
- Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| | - Hebo Wang
- Graduate school, 12553Hebei Medical University, Shijiazhuang, China.,Department of Neurology, 117872Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
12
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
13
|
The relationship between telomere length and putative markers of vascular ageing: A systematic review and meta-analysis. Mech Ageing Dev 2021; 201:111604. [PMID: 34774607 DOI: 10.1016/j.mad.2021.111604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Accelerated biological aging contributes to the evolution of cardiovascular disease. However, its influence on subclinical organ damage remains unclear. Leukocyte telomere length (LTL) is emerging as a marker of biological cardiovascular aging. We performed a systematic review and meta-analysis to assess the association between LTL and measures of end-organ damage. PubMed, Medline, Embase, Cinahl Plus, ClinicalTrials.gov, and grey literature databases were searched for studies that assessed the association of LTL with arterial pulse wave velocity (aPWV), carotid intima-media thickness (cIMT), left ventricular mass (LVM or LVMI), renal outcomes, coronary artery calcium (CAC) and presence of carotid plaques. In a sample of 7256 patients, we found that cIMT (pooled correlation coefficient (r) = -0.249; 95 %CI -0.37, -0.128) and aPWV (pooled r = -0.194; 95 % CI -0.290, -0.100) inversely correlate with LTL. Compared to aPWV, cIMT had a stronger correlation with LTL. Patients without carotid plaques had longer telomeres than patients with carotid plaques. Quantitative analyses documented LTL association with renal outcomes and CAC, but not with LVM/LVMI. Among measures of end-organ damage, cIMT and aPWV provide the most accurate information on the contribution of biological aging to the process of vascular remodeling/damage.
Collapse
|
14
|
Lin H, Zhang X, Wang D, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Li H, Jing S. Anwulignan Ameliorates the Intestinal Ischemia/Reperfusion. J Pharmacol Exp Ther 2021; 378:222-234. [PMID: 34131018 DOI: 10.1124/jpet.121.000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Anwulignan is one of the monomer compounds in the lignans from Schisandra sphenanthera In this study, we observed the effect of anwulignan on intestinal ischemia/reperfusion (II/R) injury in male Sprague-Dawley rats and explored the underlying mechanisms. The results showed that pretreatment with oral anwulignan could significantly increase the mesenteric blood microcirculatory flow velocity; relieve the congestion and pathologic injury of jejunum; enhance the autonomic tension of jejunum smooth muscle and its reactivity to acetylcholine; increase the activities of superoxide dismutase, catalase, glutathione S-transferase, and choline acetyltransferase; increase the contents of acetylcholine and glutathione in the serum or jejunal tissue; decrease the activities of myeloperoxidase, protein kinase C, and nicotinamide adenine dinucleotide phosphate oxidase; reduce the contents of malondialdehyde, 8-hydroxy-2-deoxyguanosine, nicotinamide adenine, reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β; increase the expression levels of muscarinic receptor 3, PI3K, phosphorylation protein kinase B, p-GSK3β Ser9, Nrf2, p-Nrf2, heme oxygenase (decycling) 1, and b-cell lymphoma 2 in the jejunal tissue; and decrease the expression levels of p-GSK3β Tyr216, kelch-like ECH-associated protein 1, Bax, and cleaved caspase-3, suggesting that anwulignan can ameliorate II/R-induced jejunal tissue injury in rats and that the mechanism may be related to its activating the PI3K/protein kinase B pathway and then regulating the Nrf2/Anti-oxidative Response Element signaling pathway and the expression of apoptosis-related proteins to play antioxidant and antiapoptotic roles. SIGNIFICANCE STATEMENT: Anwulignan can significantly reduce jejunal tissue injury and the production of inflammatory factors in rats with intestinal ischemia-reperfusion injury, improve the antioxidant capacity, and reduce the apoptosis of jejunal tissue, and it has the effect of significantly improving intestinal ischemia-reperfusion injury in rats, suggesting that anwulignan may be used as a potential drug for the prevention and treatment of intestinal ischemia-reperfusion injury or a resource for the development of health food.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Dan Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiale Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - He Li
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Shu Jing
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| |
Collapse
|
15
|
Tam J, Thankam F, Agrawal DK, Radwan MM. Critical Role of LOX-1-PCSK9 Axis in the Pathogenesis of Atheroma Formation and Its Instability. Heart Lung Circ 2021; 30:1456-1466. [PMID: 34092505 DOI: 10.1016/j.hlc.2021.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is a major contributor to annual deaths globally. Atherosclerosis is a prominent risk factor for CVD. Although significant developments have been recently made in the prevention and treatment, the molecular pathology of atherosclerosis remains unknown. Interestingly, the recent discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) introduced a new avenue to explore the molecular pathogenesis and novel management strategies for atherosclerosis. Initial research focussed on the PCSK9-mediated degradation of low density lipoprotein receptor (LDLR) and subsequent activation of pro-inflammatory pathways by oxidised low density lipoprotein (ox-LDL). Recently, PCSK9 and lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) were shown to positively amplify each other pro-inflammatory activity and gene expression in endothelial cells, macrophages and vascular smooth muscle cells. In this literature review, we provide insight into the reciprocal relationship between PCSK9 and LOX-1 in the pathogenesis of atheroma formation and plaque instability in atherosclerosis. Further understanding of the LOX-1-PCSK9 axis possesses tremendous translational potential to design novel management approaches for atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Mohamed M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
16
|
Levstek T, Redenšek S, Trošt M, Dolžan V, Podkrajšek KT. Assessment of the Telomere Length and Its Effect on the Symptomatology of Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010137. [PMID: 33478114 PMCID: PMC7835735 DOI: 10.3390/antiox10010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Abstract
Telomeres, which are repetitive sequences that cap the end of the chromosomes, shorten with each cell division. Besides cellular aging, there are several other factors that influence telomere length (TL), in particular, oxidative stress and inflammation, which play an important role in the pathogenesis of neurodegenerative brain diseases including Parkinson’s disease (PD). So far, the majority of studies have not demonstrated a significant difference in TL between PD patients and healthy individuals. However, studies investigating the effect of TL on the symptomatology and disease progression of PD are scarce, and thus, warranted. We analyzed TL of peripheral blood cells in a sample of 204 PD patients without concomitant autoimmune diseases and analyzed its association with several PD related phenotypes. Monochrome multiplex quantitative PCR (mmqPCR) was used to determine relative TL given as a ratio of the amount of DNA between the telomere and albumin as the housekeeping gene. We found a significant difference in the relative TL between PD patients with and without dementia, where shorter TL presented higher risk for dementia (p = 0.024). However, the correlation was not significant after adjustment for clinical factors (p = 0.509). We found no correlations between TLs and the dose of dopaminergic therapy when the analysis was adjusted for genetic variability in inflammatory or oxidative factors. In addition, TL influenced time to onset of motor complications after levodopa treatment initiation (p = 0.0134), but the association did not remain significant after adjustment for age at inclusion and disease duration (p = 0.0781). Based on the results of our study we conclude that TL contributes to certain PD-related phenotypes, although it may not have a major role in directing the course of the disease. Nevertheless, this expends currently limited knowledge regarding the association of the telomere attrition and the disease severity or motor complications in Parkinson’s disease.
Collapse
Affiliation(s)
- Tina Levstek
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (S.R.); (V.D.)
| | - Sara Redenšek
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (S.R.); (V.D.)
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia;
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (S.R.); (V.D.)
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (T.L.); (S.R.); (V.D.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
17
|
Herrmann W, Herrmann M. The Importance of Telomere Shortening for Atherosclerosis and Mortality. J Cardiovasc Dev Dis 2020; 7:jcdd7030029. [PMID: 32781553 PMCID: PMC7570376 DOI: 10.3390/jcdd7030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Telomeres are the protective end caps of chromosomes and shorten with every cell division. Short telomeres are associated with older age and adverse lifestyle factors. Leucocyte telomere length (LTL) has been proposed as a biomarker of biological age. The shortening of LTL with age is the result of the end-replication problem, environmental, and lifestyle-related factors. Epidemiologic studies have shown that LTL predicts cardiovascular disease, all-cause mortality, and death from vascular causes. Age appears to be an important co-variate that explains a substantial fraction of this effect. Although it has been proposed that short telomeres promote atherosclerosis and impair the repair of vascular lesions, existing results are inconsistent. Oxidative stress and chronic inflammation can both accelerate telomere shortening. Multiple factors, including homocysteine (HCY), vitamin B6, and vitamin B12 modulate oxidative stress and inflammation through direct and indirect mechanisms. This review provides a compact overview of telomere physiology and the utility of LTL measurements in atherosclerosis and cardiovascular disease. In addition, it summarizes existing knowledge regarding the impact of oxidative stress, inflammation, HCY, and B-vitamins on telomere function.
Collapse
Affiliation(s)
- Wolfgang Herrmann
- Department of Clinical Chemistry, Medical School of the Saarland University, 66421 Homburg, Saar, Germany;
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-385-13145; Fax: +43-316-385-13430
| |
Collapse
|
18
|
Ma X, Wang F, Zhen X, Zhao L, Fang L, Dong Z, Chen W, Zhou X. gp91 phox, a Novel Biomarker Evaluating Oxidative Stress, Is Elevated in Subclinical Hypothyroidism. Int J Endocrinol 2020; 2020:3161730. [PMID: 32454820 PMCID: PMC7225862 DOI: 10.1155/2020/3161730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND gp91phox, the catalytic core of NADPH oxidase (NOX) and biomarker of NOX activation, has been recently recognized as a parameter of systemic oxidative stress in several studies. Subclinical hypothyroidism (SH) is characteristic of elevated level of serum thyroid stimulating hormone (TSH) and is frequently accompanied with cholesterolemia. In this study, the levels of serum soluble gp91phox were measured to assess the oxidative stress in patients with SH. And the relationship among gp91phox, low-density lipoprotein-C (LDL-C), and TSH was also investigated. METHODS A total of 51 subjects were enrolled and categorized into four groups: the healthy controls subjects (n = 13), controls with high level of LDL-C alone (n = 12), SH with normal level of LDL-C (n = 11), and SH with high level of LDL-C (n = 15). The related clinical and laboratory data were collected for statistical analysis. All the patients were newly diagnosed and did not take any medication. The information of lipid profile and thyroid function was extracted, and the concentrations of gp91phox were obtained with ELISA. RESULTS The levels of serum soluble gp91phox evidently increased in the patients with SH with a high level of LDL-C (81.52 ± 37.00 ug/mL) as compared to the healthy controls (54.98 ± 1.83ug/mL, p < 0.001), controls with high level of LDL-C (61.21 ± 4.48 ug/mL, p=0.038) and SH with a normal level of LDL-C (62.82 ± 11.67ug/mL, p=0.027). Additionally, the levels of gp91phox showed a significant positive correlation with both the levels of LDL-C (r = 0.595, p < 0.001) and TSH (r = 0.346, p=0.013) by the Spearman correlation analyses. The correlation remained significant even when the effect of another factor was controlled (TSH: when the effect of LDL-C was controlled, r = 0.453, p=0.001; LDL-C: when the effect of TSH was controlled, r = 0.291, p=0.040). The main effect analysis showed an independent main effect of either LDL-C (p = 0.041) or TSH (p=0.022) on gp91phox without interaction (p=0.299). CONCLUSIONS Our work demonstrated that the levels of gp91phox, a novel biomarker for measuring the oxidative stress, were significantly elevated in the patients with SH. And LDL-C and TSH were both independent predictors of gp91phox. Abbreviations. BMI : Body mass index; TC : Total cholesterol; LDL-C : Low-density lipoprotein cholesterol; HDL-C : High-density lipoprotein cholesterol; TG : Triglyceride; FBG : Fasting blood glucose; FT3 : Free triiodothyronine; FT4 : Free thyroxine; TSH: Thyroid stimulating hormone; SBP : Systolic blood pressure; DBP : Diastolic blood pressure; SD : Standard deviation; LSD: Least significant difference.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Furong Wang
- Department of Pharmacology, College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Xiaowen Zhen
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021 Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 Shandong, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021 Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 Shandong, China
| | - Li Fang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021 Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 Shandong, China
| | - Zhenfang Dong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021 Shandong, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 Shandong, China
| |
Collapse
|