1
|
Lu B, Liao SM, Liang SJ, Li JX, Liu XH, Huang RB, Zhou GP. NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition. Curr Issues Mol Biol 2024; 46:5682-5700. [PMID: 38921011 PMCID: PMC11201969 DOI: 10.3390/cimb46060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Si-Ming Liao
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Shi-Jie Liang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Jian-Xiu Li
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ri-Bo Huang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
- Life Science and Technology College, Guangxi University, Nanning 530004, China
- Rocky Mount Life Science Institute, Rocky Mount, NC 27804, USA
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (J.-X.L.)
- Rocky Mount Life Science Institute, Rocky Mount, NC 27804, USA
| |
Collapse
|
2
|
Lu B, Liao SM, Liang SJ, Peng LX, Li JX, Liu XH, Huang RB, Zhou GP. The Bifunctional Effects of Lactoferrin (LFcinB11) in Inhibiting Neural Cell Adhesive Molecule (NCAM) Polysialylation and the Release of Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:4641. [PMID: 38731861 PMCID: PMC11083048 DOI: 10.3390/ijms25094641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.
Collapse
Affiliation(s)
- Bo Lu
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Si-Ming Liao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Shi-Jie Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Li-Xin Peng
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Jian-Xiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ri-Bo Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| | - Guo-Ping Zhou
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| |
Collapse
|
3
|
Lu B, Liao SM, Liu XH, Liang SJ, Huang J, Lin M, Meng L, Wang QY, Huang RB, Zhou GP. The NMR studies of CMP inhibition of polysialylation. J Enzyme Inhib Med Chem 2023; 38:2248411. [PMID: 37615033 PMCID: PMC10453990 DOI: 10.1080/14756366.2023.2248411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Si-Ming Liao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shi-Jie Liang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jun Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mei Lin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Li Meng
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qing-Yan Wang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| |
Collapse
|
4
|
Decloquement M, Venuto MT, Cogez V, Steinmetz A, Schulz C, Lion C, Noel M, Rigolot V, Teppa RE, Biot C, Rebl A, Galuska SP, Harduin-Lepers A. Salmonid polysialyltransferases to generate a variety of sialic acid polymers. Sci Rep 2023; 13:15610. [PMID: 37730806 PMCID: PMC10511417 DOI: 10.1038/s41598-023-42095-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.
Collapse
Affiliation(s)
- Mathieu Decloquement
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marzia Tindara Venuto
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Virginie Cogez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Anna Steinmetz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Cédric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Maxence Noel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Rigolot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Roxana Elin Teppa
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology FBN, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Sebastian Peter Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Faculté des sciences et Technologies, Univ. Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
5
|
The Graphical Studies of the Major Molecular Interactions for Neural Cell Adhesion Molecule (NCAM) Polysialylation by Incorporating Wenxiang Diagram into NMR Spectroscopy. Int J Mol Sci 2022; 23:ijms232315128. [PMID: 36499451 PMCID: PMC9736422 DOI: 10.3390/ijms232315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.
Collapse
|
6
|
Saito T, Yagi H, Kuo CW, Khoo KH, Kato K. An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase 9. Commun Biol 2022; 5:676. [PMID: 35831428 PMCID: PMC9279290 DOI: 10.1038/s42003-022-03616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a “Lewis X code”, which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering. A 29-amino acid sequence in the N-terminal domain of LAMP-1 promotes its Lewis X glycosylation and is embeddable to other proteins for Lewis X glycoengineering.
Collapse
Affiliation(s)
- Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Kay-Hooi Khoo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.
| |
Collapse
|
7
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
8
|
Mindler K, Ostertag E, Stehle T. The polyfunctional polysialic acid: A structural view. Carbohydr Res 2021; 507:108376. [PMID: 34273862 DOI: 10.1016/j.carres.2021.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.
Collapse
Affiliation(s)
- Katja Mindler
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
9
|
Ding Y, Xia S, Zhang H, Chen Q, Niu B. Loureirin B activates GLP-1R and promotes insulin secretion in Ins-1 cells. J Cell Mol Med 2020; 25:855-866. [PMID: 33300675 PMCID: PMC7812269 DOI: 10.1111/jcmm.16138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Loureirin B (LB) is a natural product derived from Sanguis draconis, which has hypoglycaemic effects. In order to research the possible target of LB in the treatment of diabetes, molecular docking was used to simulate the interaction between LB and potential targets, and among them, glucagon‐like peptide‐1 receptor (GLP‐1R) had the optimal results. Further, spectroscopy and surface plasmon resonance (SPR) experiments were applied to detect the interaction between LB and GLP‐1R. Ultimately, after GLP‐1R siRNA interfering the expression of GLP‐1R in Ins‐1 cell, the promoting insulin secretion of LB was weaken, which directly proved that GLP‐1R plays an important role. These results show that LB promotes insulin secretion of Ins‐1 cells through GLP‐1R. Hence, the strategy of LB as a prodrug will provide a potential approach for non‐peptide GLP‐1R agonist.
Collapse
Affiliation(s)
- Yanting Ding
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Sijing Xia
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Han Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|