1
|
Dungu KHS, Carlsen ELM, Glenthøj JP, Schmidt LS, Jørgensen IM, Cortes D, Poulsen A, Vissing NH, Bagger FO, Nygaard U. Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study. Int J Mol Sci 2024; 25:4857. [PMID: 38732074 PMCID: PMC11084417 DOI: 10.3390/ijms25094857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Early diagnosis of infections in young infants remains a clinical challenge. Young infants are particularly vulnerable to infection, and it is often difficult to clinically distinguish between bacterial and viral infections. Urinary tract infection (UTI) is the most common bacterial infection in young infants, and the incidence of associated bacteremia has decreased in the recent decades. Host RNA expression signatures have shown great promise for distinguishing bacterial from viral infections in young infants. This prospective study included 121 young infants admitted to four pediatric emergency care departments in the capital region of Denmark due to symptoms of infection. We collected whole blood samples and performed differential gene expression analysis. Further, we tested the classification performance of a two-gene host RNA expression signature approaching clinical implementation. Several genes were differentially expressed between young infants with UTI without bacteremia and viral infection. However, limited immunological response was detected in UTI without bacteremia compared to a more pronounced response in viral infection. The performance of the two-gene signature was limited, especially in cases of UTI without bloodstream involvement. Our results indicate a need for further investigation and consideration of UTI in young infants before implementing host RNA expression signatures in clinical practice.
Collapse
Affiliation(s)
- Kia Hee Schultz Dungu
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.H.S.D.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Emma Louise Malchau Carlsen
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Neonatology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jonathan Peter Glenthøj
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital North Zealand, 3400 Hillerød, Denmark
| | - Lisbeth Samsø Schmidt
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark
| | - Inger Merete Jørgensen
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital North Zealand, 3400 Hillerød, Denmark
| | - Dina Cortes
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Anja Poulsen
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.H.S.D.)
| | - Nadja Hawwa Vissing
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.H.S.D.)
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ulrikka Nygaard
- Department of Pediatrics & Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (K.H.S.D.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Chappin K, Besteman SB, Hennus MP, Wildenbeest JG, Mokry M, Bont LJ, van der Vlist M, Calis JJA. Airway and Blood Monocyte Transcriptomic Profiling Reveals an Antiviral Phenotype in Infants With Severe Respiratory Syncytial Virus Infection. J Infect Dis 2024; 229:S100-S111. [PMID: 37941411 DOI: 10.1093/infdis/jiad487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is the primary cause of lower respiratory tract infections in children <5 years of age. Monocytes, especially in the respiratory tract, are suggested to contribute to RSV pathology, but their role is incompletely understood. With transcriptomic profiling of blood and airway monocytes, we describe the role of monocytes in severe RSV infection. METHODS Tracheobronchial aspirates and blood samples were collected from control patients (n = 9) and those infected with RSV (n = 14) who were admitted to the pediatric intensive care unit. Monocytes (CD14+) were sorted and analyzed by RNA sequencing for transcriptomic profiling. RESULTS Peripheral blood and airway monocytes of patients with RSV demonstrated increased expression of antiviral and interferon-responsive genes as compared with controls. Cytokine signaling showed a shared response between blood and airway monocytes while displaying responses that were more pronounced according to the tissue of origin. Airway monocytes upregulated additional genes related to migration and inflammation. CONCLUSIONS We found that the RSV-induced interferon response extends from the airways to the peripheral blood. Moreover, RSV induces a migration-promoting transcriptional program in monocytes. Unraveling the monocytic response and its role in the immune response to RSV infection could help the development of therapeutics to prevent severe disease.
Collapse
Affiliation(s)
- K Chappin
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | | | - M P Hennus
- Department of Paediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Centre Utrecht
| | | | - M Mokry
- Experimental Cardiology, Department of Heart and Lungs, University Medical Centre Utrecht, the Netherlands
| | - L J Bont
- Department of Paediatric Infectious Diseases and Immunology
| | - M van der Vlist
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | - J J A Calis
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| |
Collapse
|
3
|
Chen L, Wang X, Ban T, Usman M, Liu S, Lyu D, Chen H. Research Ideas Discovery via Hierarchical Negative Correlation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1639-1650. [PMID: 35767488 DOI: 10.1109/tnnls.2022.3184498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new research idea may be inspired by the connections of keywords. Link prediction discovers potential nonexisting links in an existing graph and has been applied in many applications. This article explores a method of discovering new research ideas based on link prediction, which predicts the possible connections of different keywords by analyzing the topological structure of the keyword graph. The patterns of links between keywords may be diversified due to different domains and different habits of authors. Therefore, it is often difficult for a single learner to extract diverse patterns of different research domains. To address this issue, groups of learners are organized with negative correlation to encourage the diversity of sublearners. Moreover, a hierarchical negative correlation mechanism is proposed to extract subgraph features in different order subgraphs, which improves the diversity by explicitly supervising the negative correlation on each layer of sublearners. Experiments are conducted to illustrate the effectiveness of the proposed model to discover new research ideas. Under the premise of ensuring the performance of the model, the proposed method consumes less time and computational cost compared with other ensemble methods.
Collapse
|
4
|
Ivanov SM, Tarasova OA, Poroikov VV. Transcriptome-based analysis of human peripheral blood reveals regulators of immune response in different viral infections. Front Immunol 2023; 14:1199482. [PMID: 37795081 PMCID: PMC10546413 DOI: 10.3389/fimmu.2023.1199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction There are difficulties in creating direct antiviral drugs for all viruses, including new, suddenly arising infections, such as COVID-19. Therefore, pathogenesis-directed therapy is often necessary to treat severe viral infections and comorbidities associated with them. Despite significant differences in the etiopathogenesis of viral diseases, in general, they are associated with significant dysfunction of the immune system. Study of common mechanisms of immune dysfunction caused by different viral infections can help develop novel therapeutic strategies to combat infections and associated comorbidities. Methods To identify common mechanisms of immune functions disruption during infection by nine different viruses (cytomegalovirus, Ebstein-Barr virus, human T-cell leukemia virus type 1, Hepatitis B and C viruses, human immunodeficiency virus, Dengue virus, SARS-CoV, and SARS-CoV-2), we analyzed the corresponding transcription profiles from peripheral blood mononuclear cells (PBMC) using the originally developed pipeline that include transcriptome data collection, processing, normalization, analysis and search for master regulators of several viral infections. The ten datasets containing transcription data from patients infected by nine viruses and healthy people were obtained from Gene Expression Omnibus. The analysis of the data was performed by Genome Enhancer pipeline. Results We revealed common pathways, cellular processes, and master regulators for studied viral infections. We found that all nine viral infections cause immune activation, exhaustion, cell proliferation disruption, and increased susceptibility to apoptosis. Using network analysis, we identified PBMC receptors, representing proteins at the top of signaling pathways that may be responsible for the observed transcriptional changes and maintain the current functional state of cells. Discussion The identified relationships between some of them and virus-induced alteration of immune functions are new and have not been found earlier, e.g., receptors for autocrine motility factor, insulin, prolactin, angiotensin II, and immunoglobulin epsilon. Modulation of the identified receptors can be investigated as one of therapeutic strategies for the treatment of severe viral infections.
Collapse
Affiliation(s)
- Sergey M. Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga A. Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
5
|
Habgood-Coote D, Wilson C, Shimizu C, Barendregt AM, Philipsen R, Galassini R, Calle IR, Workman L, Agyeman PKA, Ferwerda G, Anderson ST, van den Berg JM, Emonts M, Carrol ED, Fink CG, de Groot R, Hibberd ML, Kanegaye J, Nicol MP, Paulus S, Pollard AJ, Salas A, Secka F, Schlapbach LJ, Tremoulet AH, Walther M, Zenz W, Van der Flier M, Zar HJ, Kuijpers T, Burns JC, Martinón-Torres F, Wright VJ, Coin LJM, Cunnington AJ, Herberg JA, Levin M, Kaforou M. Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature. MED 2023; 4:635-654.e5. [PMID: 37597512 DOI: 10.1016/j.medj.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.
Collapse
Affiliation(s)
- Dominic Habgood-Coote
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Clare Wilson
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Chisato Shimizu
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Anouk M Barendregt
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ria Philipsen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Rachel Galassini
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Irene Rivero Calle
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Lesley Workman
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gerben Ferwerda
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Suzanne T Anderson
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - J Merlijn van den Berg
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke Emonts
- Great North Children's Hospital, Department of Paediatric Immunology, Infectious Diseases & Allergy and NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Colin G Fink
- Micropathology Ltd Research and Diagnosis, Coventry, UK; University of Warwick, Coventry, UK
| | - Ronald de Groot
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Department of Laboratory Medicine, Nijmegen, the Netherlands
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - John Kanegaye
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mark P Nicol
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Stéphane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Antonio Salas
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
| | - Fatou Secka
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Luregn J Schlapbach
- Pediatric and Neonatal Intensive Care Unit, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, and Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Adriana H Tremoulet
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Walther
- Medical Research Council Unit, Fajara, The Gambia at the London School of Hygiene and Tropical Medicine, MRCG at LSHTM Fajara, Banjul, The Gambia
| | - Werner Zenz
- University Clinic of Paediatrics and Adolescent Medicine, Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Michiel Van der Flier
- Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Paediatric Infectious Diseases and Immunology Amalia Children's Hospital, Radboudumc, Nijmegen, the Netherlands
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross Childrens Hospital and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Blood Cell Research, Sanquin Blood Supply, Division Research and Landsteiner Laboratory of Amsterdam UMC (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jane C Burns
- Department of Pediatrics, Rady Children's Hospital San Diego/University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Federico Martinón-Torres
- Pediatrics Department, Translational Pediatrics and Infectious Diseases Section, Santiago de Compostela, Spain; Genetics- Vaccines- Infectious Diseases and Pediatrics Research Group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Jethro A Herberg
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease and Centre for Paediatrics & Child Health, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
6
|
Işık YE, Aydın Z. Comparative analysis of machine learning approaches for predicting respiratory virus infection and symptom severity. PeerJ 2023; 11:e15552. [PMID: 37404475 PMCID: PMC10317018 DOI: 10.7717/peerj.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Respiratory diseases are among the major health problems causing a burden on hospitals. Diagnosis of infection and rapid prediction of severity without time-consuming clinical tests could be beneficial in preventing the spread and progression of the disease, especially in countries where health systems remain incapable. Personalized medicine studies involving statistics and computer technologies could help to address this need. In addition to individual studies, competitions are also held such as Dialogue for Reverse Engineering Assessment and Methods (DREAM) challenge which is a community-driven organization with a mission to research biology, bioinformatics, and biomedicine. One of these competitions was the Respiratory Viral DREAM Challenge, which aimed to develop early predictive biomarkers for respiratory virus infections. These efforts are promising, however, the prediction performance of the computational methods developed for detecting respiratory diseases still has room for improvement. In this study, we focused on improving the performance of predicting the infection and symptom severity of individuals infected with various respiratory viruses using gene expression data collected before and after exposure. The publicly available gene expression dataset in the Gene Expression Omnibus, named GSE73072, containing samples exposed to four respiratory viruses (H1N1, H3N2, human rhinovirus (HRV), and respiratory syncytial virus (RSV)) was used as input data. Various preprocessing methods and machine learning algorithms were implemented and compared to achieve the best prediction performance. The experimental results showed that the proposed approaches obtained a prediction performance of 0.9746 area under the precision-recall curve (AUPRC) for infection (i.e., shedding) prediction (SC-1), 0.9182 AUPRC for symptom class prediction (SC-2), and 0.6733 Pearson correlation for symptom score prediction (SC-3) by outperforming the best leaderboard scores of Respiratory Viral DREAM Challenge (a 4.48% improvement for SC-1, a 13.68% improvement for SC-2, and a 13.98% improvement for SC-3). Additionally, over-representation analysis (ORA), which is a statistical method for objectively determining whether certain genes are more prevalent in pre-defined sets such as pathways, was applied using the most significant genes selected by feature selection methods. The results show that pathways associated with the 'adaptive immune system' and 'immune disease' are strongly linked to pre-infection and symptom development. These findings contribute to our knowledge about predicting respiratory infections and are expected to facilitate the development of future studies that concentrate on predicting not only infections but also the associated symptoms.
Collapse
Affiliation(s)
- Yunus Emre Işık
- Department of Management Information Systems, Sivas Cumhuriyet University, Sivas, Turkey
| | - Zafer Aydın
- Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
7
|
Zeng Z, Yue W, Kined C, Wang P, Liu R, Liu J, Chen X. Bacillus licheniformis reverses the environmental ceftriaxone sodium-induced gut microbial dysbiosis and intestinal inflammation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114890. [PMID: 37084659 DOI: 10.1016/j.ecoenv.2023.114890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Antibiotics used as a common clinical treatment have saved many lives. Widespread use of antibiotic therapy has been known to disrupt the balance of pathogenic bacteria, host-associated microorganisms and environment. However, our understanding of Bacillus licheniformis for health benefits and ability to restore the ceftriaxone sodium-induced gut microbial dysbiosis is severely limited. We used Caco-2 cell, H&E (hematoxylin-eosin staining), RT-PCR and 16S rRNA sequencing techniques to investigate the influence of Bacillus licheniformis on gut microbial dysbiosis and inflammation following ceftriaxone sodium treatment. The results showed that treatment of ceftriaxone sodium in 7 days suppressed the expression of Nf-κB pathway mRNA levels, which caused cytoplasmic vacuolization in intestinal tissues, afterward, the administration of Bacillus licheniformis could effectively restore intestinal morphology and inflammation levels. Moreover, the ceftriaxone sodium treatment entirely affected the intestinal microbial ecology, leading to a decrease in microbial abundance. Firmicutes, Proteobacteria, and Epsilonbacteraeota were the most predominant phyla in each of the four groups. Specifically, the MA group (ceftriaxone sodium treatment) resulted in a significant decrease in the relative abundance of 2 bacterial phyla and 20 bacterial genera compared to the administration of Bacillus licheniformis after ceftriaxone sodium treatment. The supplementation of Bacillus licheniformis could increase the growth of Firmicutes and Lactobacillus and encourage the construction of a more mature and stable microbiome. Furthermore, Bacillus licheniformis could restore the intestinal microbiome disorders and inflammation levels following ceftriaxone sodium treatment.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Cermon Kined
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - PengPeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ran Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China.
| |
Collapse
|
8
|
S. K, Sudha L, Navaneetha Krishnan M. Water cycle tunicate swarm algorithm based deep residual network for virus detection with gene expression data. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2023. [DOI: 10.1080/21681163.2023.2165161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Karthi S.
- Department of Computer Science and Engineering, Annamalai University, Chidambaram, India
| | - L.R. Sudha
- Department of Computer Science and Engineering, Annamalai University, Chidambaram, India
| | - M. Navaneetha Krishnan
- Department of Computer Science and Engineering, St Joseph College of Engineering, Chennai, India
| |
Collapse
|
9
|
Gómez-Carballa A, Pischedda S, Rivero-Calle I, Montoto-Louzao J, Martinón-Torres F, Salas A. CD14 and related genes in respiratory morbidity after Respiratory Syncytial Virus infection. J Infect Dis 2022; 226:1295-1297. [PMID: 35714332 DOI: 10.1093/infdis/jiac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- A Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - S Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - I Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Montoto-Louzao
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - F Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | | |
Collapse
|
10
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
11
|
Atallah J, Mansour MK. Implications of Using Host Response-Based Molecular Diagnostics on the Management of Bacterial and Viral Infections: A Review. Front Med (Lausanne) 2022; 9:805107. [PMID: 35186993 PMCID: PMC8850635 DOI: 10.3389/fmed.2022.805107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Host-based diagnostics are a rapidly evolving field that may serve as an alternative to traditional pathogen-based diagnostics for infectious diseases. Understanding the exact mechanisms underlying a host-immune response and deriving specific host-response signatures, biomarkers and gene transcripts will potentially achieve improved diagnostics that will ultimately translate to better patient outcomes. Several studies have focused on novel techniques and assays focused on immunodiagnostics. In this review, we will highlight recent publications on the current use of host-based diagnostics alone or in combination with traditional microbiological assays and their potential future implications on the diagnosis and prognostic accuracy for the patient with infectious complications. Finally, we will address the cost-effectiveness implications from a healthcare and public health perspective.
Collapse
Affiliation(s)
- Johnny Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Omar M, Marchionni L, Häcker G, Badr MT. Host Blood Gene Signatures Can Detect the Progression to Severe and Cerebral Malaria. Front Cell Infect Microbiol 2021; 11:743616. [PMID: 34746025 PMCID: PMC8569259 DOI: 10.3389/fcimb.2021.743616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria is a major international public health problem that affects millions of patients worldwide especially in sub-Saharan Africa. Although many tests have been developed to diagnose malaria infections, we still lack reliable diagnostic biomarkers for the identification of disease severity, especially in endemic areas where the diagnosis of cerebral malaria is very difficult and requires the exclusion of all other possible causes. Previous host and pathogen transcriptomic studies have not yielded homogenous results that can be harnessed into a reliable diagnostic tool. Here we utilized a multi-cohort analysis approach using machine-learning algorithms to identify blood gene signatures that can distinguish severe and cerebral malaria from moderate and non-cerebral cases. Using a Regularized Random Forest model, we identified 28-gene and 32-gene signatures that can reliably distinguish severe and cerebral malaria, respectively. We tested the specificity of both signatures against other common infectious diseases to ensure the signatures reliability and suitability as diagnostic markers. The severe and cerebral malaria gene-signatures were further integrated through k-top scoring pairs classifiers into ten and nine gene pairs that could distinguish severe and cerebral malaria, respectively. These signatures have various implications that can be utilized as blood diagnostic tools for malaria severity in endemic countries.
Collapse
Affiliation(s)
- Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,IMM-PACT-Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Abstract
Human responses to infection include transcriptional changes shared across diverse pathogens. To capture these common patterns, we establish the concept of, and the method for, the identification of “transfer signatures”: sets of genes defining human immunophenotypes. We demonstrate the usefulness of transfer signatures in two use cases: the progression of latent to active tuberculosis and the severity of viral respiratory infections. The modulation of the transcriptome is among the earliest responses to infection. However, defining the transcriptomic signatures of disease is challenging because logistic, technical, and cost factors limit the size and representativeness of samples in clinical studies. These limitations lead to a poor performance of signatures when applied to new datasets. Although the study focuses on infection, the central hypothesis of the work is the generalization of sets of signatures across diseases. We use a machine learning approach to identify common elements in datasets and then test empirically whether they are informative about a second dataset from a disease or process distinct from the original dataset. We identify sets of genes, which we name transfer signatures, that are predictive across diverse datasets and/or species (e.g., rhesus to humans). We demonstrate the usefulness of transfer signatures in two use cases: the progression of latent to active tuberculosis and the severity of COVID-19 and influenza A H1N1 infection. This indicates that transfer signatures can be deployed in settings that lack disease-specific biomarkers. The broad significance of our work lies in the concept that a small set of archetypal human immunophenotypes, captured by transfer signatures, can explain a larger set of responses to diverse diseases.
Collapse
|
14
|
Gupta R, Leimanis ML, Adams M, Bachmann AS, Uhl KL, Bupp CP, Hartog NL, Kort EJ, Olivero R, Comstock SS, Sanfilippo DJ, Lunt SY, Prokop JW, Rajasekaran S. Balancing precision versus cohort transcriptomic analysis of acute and recovery phase of viral bronchiolitis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1147-L1157. [PMID: 33851876 DOI: 10.1152/ajplung.00440.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral infections affecting the lower respiratory tract place enormous burdens on hospitals. As neither vaccines nor antiviral agents exist for many viruses, understanding risk factors and outcomes in each patient using minimally invasive analysis, such as blood, can lead to improved health care delivery. A cohort of PAXgene RNA sequencing of infants admitted with moderate or severe acute bronchiolitis and respiratory syncytial virus were compared with case-control statistical analysis and cohort-based outlier mapping for precision transcriptomics. Patients with severe bronchiolitis had signatures connected to the immune system, interferon signaling, and cytokine signaling, with marked sex differences in XIST, RPS4Y1, KDM5D, and LINC00278 for severity. Several patients had unique secondary infections, cytokine activation, immune responses, biological pathways, and immune cell activation, highlighting the need for defining patient-level transcriptomic signatures. Balancing relative contributions of cohort-based biomarker discoveries with patient's biological responses is needed to understand the totality of mechanisms of adverse outcomes in viral bronchiolitis.
Collapse
Affiliation(s)
- Ruchir Gupta
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mara L Leimanis
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Marie Adams
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Caleb P Bupp
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | | | - Eric J Kort
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,DeVos Cardiovascular Research Program, Spectrum Health and Van Andel Institute, Grand Rapids, Michigan
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| | - Dominic J Sanfilippo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Sophia Y Lunt
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Office of Research, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
15
|
Gómez-Carballa A, Barral-Arca R, Cebey-López M, Bello X, Pardo-Seco J, Martinón-Torres F, Salas A. Identification of a Minimal 3-Transcript Signature to Differentiate Viral from Bacterial Infection from Best Genome-Wide Host RNA Biomarkers: A Multi-Cohort Analysis. Int J Mol Sci 2021; 22:ijms22063148. [PMID: 33808774 PMCID: PMC8003556 DOI: 10.3390/ijms22063148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The fight against the spread of antibiotic resistance is one of the most important challenges facing health systems worldwide. Given the limitations of current diagnostic methods, the development of fast and accurate tests for the diagnosis of viral and bacterial infections would improve patient management and treatment, as well as contribute to reducing antibiotic misuse in clinical settings. In this scenario, analysis of host transcriptomics constitutes a promising target to develop new diagnostic tests based on the host-specific response to infections. We carried out a multi-cohort meta-analysis of blood transcriptomic data available in public databases, including 11 different studies and 1209 samples from virus- (n = 695) and bacteria- (n = 514) infected patients. We applied a Parallel Regularized Regression Model Search (PReMS) on a set of previously reported genes that distinguished viral from bacterial infection to find a minimum gene expression bio-signature. This strategy allowed us to detect three genes, namely BAFT, ISG15 and DNMT1, that clearly differentiate groups of infection with high accuracy (training set: area under the curve (AUC) 0.86 (sensitivity: 0.81; specificity: 0.87); testing set: AUC 0.87 (sensitivity: 0.82; specificity: 0.86)). BAFT and ISG15 are involved in processes related to immune response, while DNMT1 is related to the preservation of methylation patterns, and its expression is modulated by pathogen infections. We successfully tested this three-transcript signature in the 11 independent studies, demonstrating its high performance under different scenarios. The main advantage of this three-gene signature is the low number of genes needed to differentiate both groups of patient categories.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain; (A.G.-C.); (R.B.-A.); (M.C.-L.); (X.B.); (J.P.-S.)
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
| | - Ruth Barral-Arca
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain; (A.G.-C.); (R.B.-A.); (M.C.-L.); (X.B.); (J.P.-S.)
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
| | - Miriam Cebey-López
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain; (A.G.-C.); (R.B.-A.); (M.C.-L.); (X.B.); (J.P.-S.)
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
| | - Xabier Bello
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain; (A.G.-C.); (R.B.-A.); (M.C.-L.); (X.B.); (J.P.-S.)
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
| | - Jacobo Pardo-Seco
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain; (A.G.-C.); (R.B.-A.); (M.C.-L.); (X.B.); (J.P.-S.)
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, 15706 Galicia, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706 Galicia, Spain
| | - Antonio Salas
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706 Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15706 Galicia, Spain
- Correspondence:
| |
Collapse
|
16
|
Cebey-López M, Salas A. Recognising the asymptomatic enemy. THE LANCET. INFECTIOUS DISEASES 2020; 21:305-306. [PMID: 32979931 PMCID: PMC7515607 DOI: 10.1016/s1473-3099(20)30587-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Galicia 15706, Spain.
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain; GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| |
Collapse
|
17
|
Barral-Arca R, Gómez-Carballa A, Cebey-López M, Currás-Tuala MJ, Pischedda S, Viz-Lasheras S, Bello X, Martinón-Torres F, Salas A. RNA-Seq Data-Mining Allows the Discovery of Two Long Non-Coding RNA Biomarkers of Viral Infection in Humans. Int J Mol Sci 2020; 21:ijms21082748. [PMID: 32326627 PMCID: PMC7215422 DOI: 10.3390/ijms21082748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.
Collapse
Affiliation(s)
- Ruth Barral-Arca
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Miriam Cebey-López
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - María José Currás-Tuala
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sara Pischedda
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sandra Viz-Lasheras
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Xabier Bello
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Correspondence:
| |
Collapse
|