1
|
Bai Y, Harvey T, Bilyou C, Hu M, Fan CM. Skeletal Muscle Satellite Cells Co-Opt the Tenogenic Gene Scleraxis to Instruct Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570982. [PMID: 38168349 PMCID: PMC10760055 DOI: 10.1101/2023.12.10.570982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skeletal muscles connect bones and tendons for locomotion and posture. Understanding the regenerative processes of muscle, bone and tendon is of importance to basic research and clinical applications. Despite their interconnections, distinct transcription factors have been reported to orchestrate each tissue's developmental and regenerative processes. Here we show that Scx expression is not detectable in adult muscle stem cells (also known as satellite cells, SCs) during quiescence. Scx expression begins in activated SCs and continues throughout regenerative myogenesis after injury. By SC-specific Scx gene inactivation (ScxcKO), we show that Scx function is required for SC expansion/renewal and robust new myofiber formation after injury. We combined single-cell RNA-sequencing and CUT&RUN to identify direct Scx target genes during muscle regeneration. These target genes help explain the muscle regeneration defects of ScxcKO, and are not overlapping with Scx -target genes identified in tendon development. Together with a recent finding of a subpopulation of Scx -expressing connective tissue fibroblasts with myogenic potential during early embryogenesis, we propose that regenerative and developmental myogenesis co-opt the Scx gene via different mechanisms.
Collapse
|
2
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
3
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Lührs L, Irioda AC, Abdelwahid E, Regina Cavalli L, Zotarelli-Filho IJ, de Carvalho KAT. Meta-analysis of the Mesenchymal Stem Cells Immortalization Protocols: A Guideline for Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:1009-1020. [PMID: 38221663 DOI: 10.2174/011574888x268464231016070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND This systematic review describes the most common methodologies for immortalizing human and animal mesenchymal stem cells (MSCs). This study follows the rules of PRISMA and is registered in the Institutional Review Board of PROSPERO International of systematic reviews, numbered protocol code: CRD42020202465. METHOD The data search systematization was based on the words "mesenchymal stem cell" AND "immortalization." The search period for publications was between 2000 and 2022, and the databases used were SCOPUS, PUBMED, and SCIENCE DIRECT. The search strategies identified 384 articles: 229 in the SCOPUS database, 84 in PUBMED, and 71 in SCIENCE DIRECT. After screening by titles and abstracts, 285 articles remained. This review included thirty-nine articles according to the inclusion and exclusion criteria. RESULT In 28 articles, MSCs were immortalized from humans and 11 animals. The most used immortalization methodology was viral transfection. The most common immortalized cell type was the MSC from bone marrow, and the most used gene for immortalizing human and animal MSCs was hTERT (39.3%) and SV40T (54.5%), respectively. CONCLUSION Also, it was observed that although less than half of the studies performed tumorigenicity assays to validate the immortalized MSCs, other assays, such as qRT-PCR, colony formation in soft agar, karyotype, FISH, and cell proliferation, were performed in most studies on distinct MSC cell passages.
Collapse
Affiliation(s)
| | | | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Luciane Regina Cavalli
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Idiberto José Zotarelli-Filho
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
- ABRAN - Associação Brasileira de Nutrologia/Brazilian Association of Nutrology, Catanduva, Sao Paulo, Brazil
- College of Palliative Medicine of Sri Lanka, Colombo, Sri Lanka
| | | |
Collapse
|
4
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
5
|
Tindell RK, Busselle LP, Holloway JL. Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J Biomed Mater Res A 2023; 111:778-789. [PMID: 36594559 DOI: 10.1002/jbm.a.37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials, where such materials are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues.
Collapse
Affiliation(s)
- Raymond Kevin Tindell
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Lincoln P Busselle
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Julianne L Holloway
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Tsuchiya Y, Bayer ML, Schjerling P, Soendenbroe C, Kjaer M. CRediT author statement (Author contributions)Yoshifumi Tsuchiya: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing – original draft, Visualization, Supervision, Project administration, Funding acquisition. Monika Lucia Bayer: Investigation, Resources. Peter Schjerling: Investigation, Writing – review & editing. . Casper Soendenbroe: Validation, Writing – review & editing. Michael Kjaer: Writing – review & editing, Supervision, Project administration, Funding acquisition acquisition.Human derived tendon cells contribute to myotube formation in vitro. Exp Cell Res 2022; 417:113164. [DOI: 10.1016/j.yexcr.2022.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022]
|
7
|
Wei X, Nicoletti C, Puri PL. Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Semin Cell Dev Biol 2021; 119:23-31. [PMID: 34332886 PMCID: PMC8552908 DOI: 10.1016/j.semcdb.2021.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.
Collapse
Affiliation(s)
- X Wei
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - C Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - P L Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Expression Profile of Long Noncoding RNAs and Circular RNAs in Mouse C3H10T1/2 Mesenchymal Stem Cells Undergoing Myogenic and Cardiomyogenic Differentiation. Stem Cells Int 2021; 2021:8882264. [PMID: 34012468 PMCID: PMC8105102 DOI: 10.1155/2021/8882264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Currently, a heterogeneous category of noncoding RNAs (ncRNA) that directly regulate the expression or function of protein-coding genes is shown to have an effect on the fate decision of stem cells. However, the detailed regulatory roles of ncRNAs in myogenic and cardiomyogenic differentiation of mouse C3H10T1/2 mesenchymal stem cells (MSCs) are far from clear. Methods In this study, 5-azacytidine- (5-AZA-) treated C3H10T1/2 cells were differentiated into myocyte-like and cardiomyocyte-like cells. Next, ncRNA associated with myogenic and cardiomyogenic differentiation was identified using high-throughput RNA sequencing (RNA-seq) data. Bioinformatics analysis was conducted to identify the differentially expressed ncRNAs and the related signaling pathways. Results Myotube-like structure was formed after 5-AZA treatment of C3H10T1/2 cells. In addition, myogenic and cardiomyogenic differentiation-related genes like GATA4, cTnt, MyoD, and Desmin were upregulated significantly after the 5-AZA treatment. Totally, 1538 differentially expressed lncRNAs and 3398 differentially expressed mRNAs were identified, including 1175 upregulated and 363 downregulated lncRNAs and 2429 upregulated and 969 downregulated mRNAs. In addition, 46 differentially expressed circRNAs were identified, including 25 upregulated and 21 downregulated circRNAs. Moreover, the differentially expressed mRNAs were enriched into 5 significant pathways, including those for focal adhesion, ECM-receptor interaction, PI3K-AKT signaling pathway, PPAR signaling pathway, and Tyrosine metabolism. Conclusions A systematic view of the expression of ncRNAs in myogenic and cardiomyogenic differentiation of MSCs was provided in the study.
Collapse
|
9
|
Editorial for Special Issue: Achilles Curse and Remedy: Tendon Diseases from Pathophysiology to Novel Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21207454. [PMID: 33050349 PMCID: PMC7589155 DOI: 10.3390/ijms21207454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
In Greek mythology, Achilles, the Greek hero, is almost invulnerable-except for his Achilles heel, whose injury resulted in his death[...].
Collapse
|