1
|
Luo Q, Zhou L, Luo D, Yu L. Clonal hematopoiesis of indeterminate potential (CHIP): A potential contributor to lymphoma. Crit Rev Oncol Hematol 2024; 206:104589. [PMID: 39667716 DOI: 10.1016/j.critrevonc.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma. This paper reviews the relationship between CHIP and lymphoma, focusing on the role and mechanism of TET2 and DNMT3A-mediated CHIP in lymphoma from the perspective of laboratory research and clinical observation. Additionally, we explore the therapeutic implications of targeting CHIP genes and inflammatory pathways in lymphoma. Our findings underscore the multifaceted influence of CHIP on lymphoma development and provide a promising avenue for therapeutic interventions in CHIP mediated lymphoma.
Collapse
Affiliation(s)
- QingQing Luo
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - LiLi Zhou
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - DaYa Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Chen Y, Gao B, Pan Y, Wang Q, Zhang Q. MiR-525-5p modulates cell proliferation, cell cycle, and apoptosis in Burkitt's lymphoma by targeting MyD88 and regulating the NF-κB signaling pathway. Ann Hematol 2024:10.1007/s00277-024-06062-7. [PMID: 39495280 DOI: 10.1007/s00277-024-06062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
MiR-525-5p functions as an oncomiRNA or tumor suppressor, and has been reported in various cancer types, including laryngeal squamous cell carcinoma, glioma, breast cancer, and cervical cancer. However, the biological functions and precise mechanisms of miR-525-5p remain unclarified in Burkitt's lymphoma (BL). This study aimed to explore the roles of miR-525-5p in BL, with the goal of ascertaining its regulatory effects on the nuclear factor-kappaB (NF-κB) signaling pathway by targeting Myeloid differentiation factor 88 (MyD88). The expression levels of miR-525-5p and MyD88 were measured by quantitative real-time PCR and immunohistochemical staining, respectively. The effects of miR-525-5p overexpression on BL cell proliferation, colony-forming, and migration were evaluated by cell counting kit-8, soft agar colony-forming, and transwell assays, while cell cycle and cell apoptosis were analyzed by flow cytometry. Possible interactions between miR-525-5p and MyD88 was examined via luciferase reporter assay. The expression of MyD88 and NF-κB signaling pathway-related proteins, including p65, p-p65, IκBa, and p-ΙκBa was determined by western blotting. BL cells overexpressing miR-525-5p were treated with phorbol 12-myristate 13-acetate (PMA), and Hoechst 33258 staining and Calcein AM/EthD-I staining were used to analyze the changes in chemotherapy sensitivity of BL cells to doxorubicin (DOX). Compared with reactive lymphoid hyperplasia, miR-525-5p was dramatically downregulated in BL tissues, while the rate of MyD88 protein positivity was significantly increased. Upregulation of miR-525-5p suppressed cell proliferation, colony-forming, and migration, induced cell cycle arrest and apoptosis, and enhanced the chemosensitivity to DOX in BL cells. MiR-525-5p targeted MyD88 to inhibit the activation of NF-κB signaling pathway. PMA treatment reactivated the NF-κB pathway and reversed apoptosis mediated by miR-525-5p overexpression. These findings revealed that miR-525-5p acts as a tumor suppressor, targeting MyD88 to modulate proliferation, cell cycle progression, and apoptosis in BL cells by regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
| | - Bo Gao
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China.
- Department of Pathology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, Yunnan, 671000, P.R. China.
| | - Yun Pan
- College of Clinical Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
- Department of Pathology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, Yunnan, 671000, P.R. China
| | - Qingqing Wang
- College of Basic Medicine, Dali University, Dali, Yunnan, 671000, P.R. China
| | - Qiurong Zhang
- Department of Hematology, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, P.R. China
| |
Collapse
|
3
|
Liao C, Deng Q, Zeng L, Guo B, Li Z, Zhou D, Ke Q, Wang M, Huang M, Tan X, Cen H. Baseline and interim 18F-FDG PET/CT metabolic parameters predict the efficacy and survival in patients with diffuse large B-cell lymphoma. Front Oncol 2024; 14:1395824. [PMID: 39435282 PMCID: PMC11491437 DOI: 10.3389/fonc.2024.1395824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The prognostic value of 18F-FDG PET/CT metabolic parameters, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), in diffuse large B-cell lymphoma (DLBCL) remains inadequately explored. This study aims to assess the correlation between these parameters and patient outcomes. Methods A cohort of 156 DLBCL patients underwent 18F-FDG PET/CT imaging at baseline and after 3-4 cycles of R-CHOP or CHOP-like regimen. The third quartiles of liver uptake values were used as thresholds for calculating MTV and TLG. Patient outcomes were analyzed based on Ann Arbor staging and the 5-PS score. A nomogram was developed to predict overall survival (OS). Results Patients with low baseline TLG exhibited significantly better outcomes compared to those with high baseline TLG in both Ann Arbor stages I-II and III-IV (1-year PFS: 78.9% vs. 40%, p=0.016; OS: 94.7% vs. 40%, p=0.005 for stage I-II; 1-year PFS: 74.1% vs. 46.8%, p=0.014; OS: 85.4% vs. 71.8%, p=0.007 for stage III-IV). In interim PET/CT patients with a 5-PS score >3, the high ΔTLG group had superior prognosis (1-year PFS: 82.3% vs. 35.7%, p=0.003; OS: 88.2% vs. 85.7%, p=0.003). The nomogram achieved a C-index of 0.9 for OS prediction. Discussion The findings suggest that baseline TLG is a robust prognostic indicator for patients with DLBCL, particularly in early stages, while ΔTLG effectively distinguishes those with favorable outcomes in higher-risk groups. These metabolic parameters from 18F-FDG PET/CT could enhance treatment decision-making and patient management strategies.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, China
| | - Qifeng Deng
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Oncology Prevention and Control Center, Guigang People’s Hospital, Guigang, Guangxi, China
| | - Lin Zeng
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Baoping Guo
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhe Li
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Da Zhou
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qing Ke
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Mingyue Wang
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Mei Huang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Xiaohong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hong Cen
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
4
|
Ding Y, Huang K, Sun C, Liu Z, Zhu J, Jiao X, Liao Y, Feng X, Guo J, Zhu C, Zhai Z, Xiong S. A Bruton tyrosine kinase inhibitor-resistance gene signature predicts prognosis and identifies TRIP13 as a potential therapeutic target in diffuse large B-cell lymphoma. Sci Rep 2024; 14:21184. [PMID: 39261532 PMCID: PMC11391086 DOI: 10.1038/s41598-024-72121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Bruton tyrosine kinase inhibitor (BTKi) combined with rituximab-based chemotherapy benefits diffuse large B-cell lymphoma (DLBCL) patients. However, drug resistance is the major cause of relapse and death of DLBCL. In this study, we conducted a comprehensive analysis BTKi-resistance related genes (BRRGs) and established a 10-gene (CARD16, TRIP13, PSRC1, CASP1, PLBD1, CARD6, CAPG, CACNA1A, CDH15, and NDUFA4) signature for early identifying high-risk DLBCL patients. The resistance scores based on the BRRGs signature were associated with prognosis. Furthermore, we developed a nomogram incorporating the BRRGs signature, which demonstrated excellent performance in predicting the prognosis of DLBCL patients. Notably, tumor immune microenvironment, biological pathways, and chemotherapy sensitivity were different between high- and low-resistance score groups. Additionally, we identified TRIP13 as a key gene in our model. TRIP13 was found to be overexpressed in DLBCL and BTKi-resistant DLBCL cell lines, knocking down TRIP13 suppresses cell proliferation, promotes cell apoptosis, and enhances the apoptosis effect of BTKi on DLBCL cells by regulating the Wnt/β-catenin pathway. In conclusion, our study presents a novel BRRGs signature that could serve as a promising prognostic marker in DLBCL, and TRIP13 might be a potential therapeutic target for resistant DLBCL.
Collapse
Affiliation(s)
- Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Keke Huang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zelin Liu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jinli Zhu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xunyi Jiao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ya Liao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiangjiang Feng
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Guo
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chunhua Zhu
- Air Force Health Care Center for Special Services, Hangzhou, Zhejiang, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
6
|
Zhao M, Wang L, Wang X, He J, Yu K, Li D. Non-neoplastic cells as prognostic biomarkers in diffuse large B-cell lymphoma: A system review and meta-analysis. TUMORI JOURNAL 2024; 110:227-240. [PMID: 38183180 DOI: 10.1177/03008916231221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The microenvironment of diffuse large B-cell lymphoma (DLBCL) is composed of various components, including immune cells and immune checkpoints, some of which have been correlated with the prognosis of DLBCL, but their results remain controversial. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the microenvironment and prognosis in DLBCL. We searched PubMed, Web of Science, and EMBASE for relevant articles between 2001 and 2022. Twenty-five studies involving 4495 patients with DLBCL were included in the analysis. This meta-analysis confirmed that high densities of Foxp3+Tregs and PD-1+T cells are good indicators for overall survival (OS) in DLBCL, while high densities of programmed cell death protein ligand1(PD-L1)-positive expression cells and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3)-positive expression tumor-infiltrating cells (TILs) play a contrary role in OS. Additionally, higher numbers of T-cell intracytoplasmic antigen-1(TIA-1)-positive expression T cells imply better OS and progression-free survival (PFS), while high numbers of lymphocyte activation gene(LAG)-positive expression TILs predict bad OS and PFS. Various non-tumoral cells in the microenvironment play important roles in the prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Prognosis
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| | - Lixing Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
- Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Simsone Z, Feivalds T, Harju L, Miķelsone I, Blāķe I, Bērziņš J, Buiķis I. Morphological and Immunocytochemical Characterization of Paclitaxel-Induced Microcells in Sk-Mel-28 Melanoma Cells. Biomedicines 2024; 12:1576. [PMID: 39062149 PMCID: PMC11274385 DOI: 10.3390/biomedicines12071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Biomarkers, including proteins, nucleic acids, antibodies, and peptides, are essential for identifying diseases such as cancer and differentiating between healthy and abnormal cells in patients. To date, studies have shown that cancer stem cells have DNA repair mechanisms that deter the effects of medicinal treatment. Experiments with cell cultures and chemotherapy treatments of these cultures have revealed the presence of small cells, with a small amount of cytoplasm that can be intensively stained with azure eosin, called microcells. Microcells develop during sporosis from a damaged tumor macrocell. After anticancer therapy in tumor cells, a defective macrocell may produce one or more microcells. This study aims to characterize microcell morphology in melanoma cell lines. In this investigation, we characterized the population of cancer cell microcells after applying paclitaxel treatment to a Sk-Mel-28 melanoma cell line using immunocytochemical cell marker detection and fluorescent microscopy. Paclitaxel-treated cancer cells show stronger expression of stem-associated ALDH2, SOX2, and Nanog markers than untreated cells. The proliferation of nuclear antigens in cells and the synthesis of RNA in microcells indicate cell self-defense, promoting resistance to applied therapy. These findings improve our understanding of microcell behavior in melanoma, potentially informing future strategies to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Zane Simsone
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Tālivaldis Feivalds
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Līga Harju
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indra Miķelsone
- Department of Human Physiology and Biochemistry, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Ilze Blāķe
- Faculty of Medicine and Life Science, The University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia;
| | - Juris Bērziņš
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indulis Buiķis
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| |
Collapse
|
8
|
Li X, Yang Z, Li J, Wang G, Sun A, Wang Y, Zhang W, Liu Y, Lei H. The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China. Heliyon 2024; 10:e32788. [PMID: 39022101 PMCID: PMC11252655 DOI: 10.1016/j.heliyon.2024.e32788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Background and objective The pathological staging of non-Hodgkin lymphoma (NHL) is complex, the clinical manifestations are varied, and the prognosis differ considerably. To provide a useful reference for early detection and effective treatment of NHL, we developed a random survival forest (RSF) prognostic model based on machine learning (ML) algorithms using prospective cohort data collected from Chongqing Cancer Hospital from Jan 1, 2017 to Dec 31, 2019 (n = 1449) to compare with the traditional cornerstone method Cox proportional hazards (CPH) model and evaluate the predictability of the model. Methods Patients were randomly split into a training cohort (TC) and validation cohort (VC) based on 65/35 ratio. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to extracted the important features. And the RSF was modeled to explore the prognostic factors impacting the overall survival (OS) of patients with NHLs in the TC and validated in the VC. The C-index, the Integrated Brier Score (IBS), Kaplan-Meir method, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were selected to measure performances and discriminations of the models. In addition, individual survival probability predicted for NHL patients. Results According to the features extracted by LASSO model and univariable Cox model, 16 variables were selected to develop the RSF model with log-rank splitting rule, which were age, ethnicity, medical insurance, Ann Arbor stage, pathology, targeted-therapy, chemo-therapy, peripheral blood neutrophil count to lymphocyte count ratio (NLR), peripheral blood platelet count to lymphocyte count ratio (PLR), serum lactate dehydrogenase (LDH), CD4/CD8, platelet (PLT), absolute neutrophil count (ANC), lymphocyte (LYM), B-symptoms, and (CPR) were important prognostic factors. Compared to the CPH model (C-index = 0.748, IBS = 0.166), the RSF model (C-index = 0.786, IBS = 0.165) is outperformed in predictability and accuracy. The AUC of the RSF model to estimate the 1-, 3-, and 5-year OS in TC were 0.847, 0.847, and 0.809, respectively; while those in the CPH were 0.816, 0.803, and 0.750, respectively. Conclusions To provide practical implications for the implementation of individualized therapy, the study constructed a high-performed RSF model and reveal that it outperformed the traditional model CPH. And the RSF model ranked the risk variables. In addition, we stratified the risk of NHL patients and estimated individual survival probability based on the RSF model.
Collapse
Affiliation(s)
- Xiaosheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jieping Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Guixue Wang
- MOE Key Lab for Biorheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering Chongqing University, Chongqing, 400030, China
| | - Anlong Sun
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ying Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Wei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Haike Lei
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| |
Collapse
|
9
|
Al Sbihi A, Alasfour M, Pongas G. Innovations in Antibody-Drug Conjugate (ADC) in the Treatment of Lymphoma. Cancers (Basel) 2024; 16:827. [PMID: 38398219 PMCID: PMC10887180 DOI: 10.3390/cancers16040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Chemoimmunotherapy and cellular therapy are the mainstay of the treatment of relapsed/refractory (R/R) lymphomas. Development of resistance and commonly encountered toxicities of these treatments limit their role in achieving desired response rates and durable remissions. The Antibody-Drug Conjugate (ADC) is a novel class of targeted therapy that has demonstrated significant efficacy in treating various cancers, including lymphomas. To date, three ADC agents have been approved for different lymphomas, marking a significant advancement in the field. In this article, we aim to review the concept of ADCs and their application in lymphoma treatment, provide an analysis of currently approved agents, and discuss the ongoing advancements of ADC development.
Collapse
Affiliation(s)
| | | | - Georgios Pongas
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Lu S, Zeng L, Mo G, Lei D, Li Y, Ou G, Wu H, Sun J, Rong C, He S, Zhong D, Ke Q, Zhang Q, Tan X, Cen H, Xie X, Liao C. Long non-coding RNA SNHG17 may function as a competitive endogenous RNA in diffuse large B-cell lymphoma progression by sponging miR-34a-5p. PLoS One 2023; 18:e0294729. [PMID: 37988356 PMCID: PMC10662735 DOI: 10.1371/journal.pone.0294729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
We investigated the functional mechanism of long non-coding small nucleolar host gene 17 (SNHG17) in diffuse large B-cell lymphoma (DLBCL). lncRNAs related to the prognosis of patients with DLBCL were screened to analyze long non-coding small nucleolar host gene 17 (SNHG17) expression in DLBCL and normal tissues, and a nomogram established for predicting DLBCL prognosis. SNHG17 expression in B-cell lymphoma cells was detected using qPCR. The effects of SNHG17 with/without doxorubicin on the proliferation and apoptosis of DoHH2 and Daudi were detected. The effects of combined SNHG17 and doxorubicin were analyzed. The regulatory function of SNHG17 in DLBCL was investigated using a mouse tumor xenotransplantation model. RNA sequencing was used to analyze the signaling pathways involved in SNHG17 knockdown in B-cell lymphoma cell lines. The target relationships among SNHG17, microRNA, and downstream mRNA biomolecules were detected. A higher SNHG17 level predicted a lower survival rate. SNHG17 was highly expressed in DLBCL patient tissues and cell lines. We established a prognostic model containing SNHG17 expression, which could effectively predict the overall survival rate of DLBCL patients. SNHG17 knockdown inhibited the proliferation and induced the apoptosis of B-cell lymphoma cells, and the combination of SNHG17 and doxorubicin had a synergistic effect. SNHG17, miR-34a-5p, and ZESTE gene enhancer homolog 2 (EZH2) had common hypothetical binding sites, and the luciferase reporter assay verified that miR-34a-5p was the direct target of SNHG17, and EZH2 was the direct target of miR-34a-5p. The carcinogenic function of SNHG17 in the proliferation and apoptosis of DLBCL cells was partially reversed by a miR-34a-5p inhibitor. SNHG17 increases EZH2 levels by inhibiting miR-34a-5p. Our findings indicate SNHG17 as critical for promoting DLBCL progression by regulating the EZH2 signaling pathway and sponging miR-34a-5p. These findings provide a new prognostic marker and therapeutic target for the prognosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Shengjuan Lu
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lin Zeng
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guojun Mo
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Danqing Lei
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuanhong Li
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guodi Ou
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hailian Wu
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jie Sun
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chao Rong
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha He
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dani Zhong
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qing Ke
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaohong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong Cen
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Chengcheng Liao
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
11
|
Sereda S, Shankar A, Weber L, Ramsay AD, Hall GW, Hayward J, Wallace WHB, Landman-Parker J, Braeuninger A, Hasenclever D, Schneider A, Mauz-Koerholz C, Koerholz D, Gattenloehner S. Digital pathology in pediatric nodular lymphocyte-predominant Hodgkin lymphoma: correlation with treatment response. Blood Adv 2023; 7:6285-6289. [PMID: 37611165 PMCID: PMC10589766 DOI: 10.1182/bloodadvances.2023010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Sergej Sereda
- Department of Pathology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Ananth Shankar
- Children and Young People’s Cancer Services, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Luise Weber
- Department of Pathology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Alan D. Ramsay
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Georgina W. Hall
- Paediatric and Adolescent Haematology & Oncology Unit, Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Janis Hayward
- School of Cancer Sciences, Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | | | - Judith Landman-Parker
- Sorbonne University, Assistance Publique–Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Andreas Braeuninger
- Department of Pathology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Astrid Schneider
- Pediatric Hematology and Oncology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Christine Mauz-Koerholz
- Pediatric Hematology and Oncology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Medical Faculty of the Martin-Luther-University of Halle-Wittenberg, Halle, Germany
| | - Dieter Koerholz
- Pediatric Hematology and Oncology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Stefan Gattenloehner
- Department of Pathology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| |
Collapse
|
12
|
Nasehi L, Abdolhossein Zadeh B, Rahimi H, Hossein Ghahremani M. Radio-immunotherapy by 188Re-antiCD20 and stable silencing of IGF-IR in Raji cells, new insight in treatment of lymphoma. Gene 2023; 882:147638. [PMID: 37479093 DOI: 10.1016/j.gene.2023.147638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Hematologic malignancies such as Non-Hodgkin's lymphoma (NHL), remain a serious threat to human health due to their heterogeneity and complexity. The inherent genetic heterogeneity of NHL B-cells, as well as the instability of lymphoma cancer cells, results in drug resistance in lymphoma, posing a fundamental challenge to NHL treatment. Burkitt lymphoma (including Raji cell line) is a rare and highly aggressive form of B-cell NHL. Since overexpression of the insulin-like growth factor-1 receptor (IGF-1R) playing a prominent role in the development and transformation of different malignancies, especially lymphoma malignancies, we have explored the role of IGF-1R in the development and progression of Raji cells and the stable silencing of IGF-1R by lentivirus-mediated RNA interference (RNAi). We have shown that stable silencing of the IGF-1R gene in Raji cells using lentivirus-mediated-RNAi have resulted in a significant reduction in Raji cell proliferation. Moreover, the results of the cell viability assays indicatedhigh resistance of Raji cells to rituximab. However, coupling rituximab to 188Re potentially leads to specific targeting of Raji cells by 188Re, improving the therapeutic efficacy. We found that the synergistic effect of using a gene therapy-based system in combination with radioimmunotherapy could be a promising therapeutic strategy in the future. To the best of our knowledge, this is the first study that reports the knock down of IGF-1R via lentiviral-mediated shRNA in Raji cells.
Collapse
Affiliation(s)
- Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Medical Laboratory, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Baharak Abdolhossein Zadeh
- Department of Molecular Medicine, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rahimi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
13
|
Ridwansyah H, Wijaya I, Bashari MH, Sundawa Kartamihardja AH, Suryawathy Hernowo B. The role of chidamide in the treatment of B-cell non-Hodgkin lymphoma: An updated systematic review. BIOMOLECULES & BIOMEDICINE 2023; 23:727-739. [PMID: 37004241 PMCID: PMC10494852 DOI: 10.17305/bb.2023.8791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) is a lymphoid malignancy derived from B-cells that remains difficult to treat. Moreover, relapses and refractory cases are common. Abnormalities in epigenetic mechanisms, such as imbalanced histone acetylation affecting certain genes, contribute to relapses and refractory cases. Chidamide (tucidinostat) is a novel histone deacetylase inhibitor that can reverse this epigenetic imbalance and has been approved for the treatment of T-cell malignancies. However, the use of chidamide for B-NHL remains limited, and the lack of relevant literature exacerbates this limitation. We conducted this review to summarize the anticancer activity of chidamide against B-NHL and its clinical applications to overcome drug resistance. This systematic review was conducted according to the PRISMA 2020 guidelines, using some keyword combinations from MEDLINE and EBSCO. The inclusion and exclusion criteria were also defined. Of the 131 records retrieved from databases, 16 were included in the review. Nine articles revealed that chidamide limited tumor progression by modifying the tumor microenvironment, stopping the cell cycle, inducing apoptosis and autophagy, and enhancing complement-dependent and antibody-dependent cell-mediated cytotoxicities.According to seven other studies, administering chidamide in combination with another existing therapeutic regimen may benefit not only patients with relapsed/refractory B-NHL, but also those with newly diagnosed B-NHL. Chidamide plays many important roles in limiting B-NHL progression through epigenetic modifications. Thus, combining chidamide with other anticancer drugs may be more beneficial for patients with newly diagnosed and relapsed/refractory B-NHL.
Collapse
Affiliation(s)
- Hastono Ridwansyah
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedicine, Faculty of Medicine, President University, Bekasi, Indonesia
| | - Indra Wijaya
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Huang D, Berglund M, Damdimopoulos A, Antonson P, Lindskog C, Enblad G, Amini RM, Okret S. Sex- and Female Age-Dependent Differences in Gene Expression in Diffuse Large B-Cell Lymphoma-Possible Estrogen Effects. Cancers (Basel) 2023; 15:cancers15041298. [PMID: 36831639 PMCID: PMC9954534 DOI: 10.3390/cancers15041298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
For most lymphomas, including diffuse large B-cell lymphoma (DLBCL), the male incidence is higher, and the prognosis is worse compared to females. The reasons are unclear; however, epidemiological and experimental data suggest that estrogens are involved. With this in mind, we analyzed gene expression data from a publicly available cohort (EGAD00001003600) of 746 DLBCL samples based on RNA sequencing. We found 1293 genes to be differentially expressed between males and females (adj. p-value < 0.05). Few autosomal genes and pathways showed common sex-regulated expression between germinal center B-cell (GCB) and activated B-cell lymphoma (ABC) DLBCL. Analysis of differentially expressed genes between pre- vs. postmenopausal females identified 208 GCB and 345 ABC genes, with only 5 being shared. When combining the differentially expressed genes between females vs. males and pre- vs. postmenopausal females, nine putative estrogen-regulated genes were identified in ABC DLBCL. Two of them, NR4A2 and MUC5B, showed induced and repressed expression, respectively. Interestingly, NR4A2 has been reported as a tumor suppressor in lymphoma. We show that ABC DLBCL females with a high NR4A2 expression showed better survival. Inversely, MUC5B expression causes a more malignant phenotype in several cancers. NR4A2 and MUC5B were confirmed to be estrogen-regulated when the ABC cell line U2932 was grafted to mice. The results demonstrate sex- and female reproductive age-dependent differences in gene expression between DLBCL subtypes, likely due to estrogens. This may contribute to the sex differences in incidence and prognosis.
Collapse
Affiliation(s)
- Dan Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Core Facility, Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sam Okret
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
- Correspondence: ; Tel.: +46-8-524-81069
| |
Collapse
|
15
|
Zhang J, Gu Y, Chen B. Drug-Resistance Mechanism and New Targeted Drugs and Treatments of Relapse and Refractory DLBCL. Cancer Manag Res 2023; 15:245-255. [PMID: 36873252 PMCID: PMC9976586 DOI: 10.2147/cmar.s400013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin's lymphoma (NHL). 30 ~ 40% of DLBCL patients were resistant to the standard R-CHOP regimen or recurrence after remission. It is currently believed that drug resistance is the main cause of the recurrence and refractory of DLBCL (R/R DLBCL). With the increased understanding of DLBCL biology, tumor microenvironment and epigenetics, some new therapies and drugs like molecular and signal pathway target therapy, chimeric antigen receptor (CAR) T-cell therapy, immune checkpoint inhibitors, antibody drug-conjugate and tafasitamab have been used for R/R DLBCL. This article will review the drug resistance mechanism and novel targeted drugs and therapies of DLBCL.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
16
|
Panda D, Das N, Thakral D, Gupta R. Genomic landscape of mature B-cell non-Hodgkin lymphomas - an appraisal from lymphomagenesis to drug resistance. J Egypt Natl Canc Inst 2022; 34:52. [PMID: 36504392 DOI: 10.1186/s43046-022-00154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mature B-cell non-Hodgkin lymphomas are one of the most common hematological malignancies with a divergent clinical presentation, phenotype, and course of disease regulated by underlying genetic mechanism. MAIN BODY Genetic and molecular alterations are not only critical for lymphomagenesis but also largely responsible for differing therapeutic response in these neoplasms. In recent years, advanced molecular tools have provided a deeper understanding regarding these oncogenic drives for predicting progression as well as refractory behavior in these diseases. The prognostic models based on gene expression profiling have also been proved effective in various clinical scenarios. However, considerable overlap does exist between the genotypes of individual lymphomas and at the same time where additional molecular lesions may be associated with each entity apart from the key genetic event. Therefore, genomics is one of the cornerstones in the multimodality approach essential for classification and risk stratification of B-cell non-Hodgkin lymphomas. CONCLUSION We hereby in this review discuss the wide range of genetic aberrancies associated with tumorigenesis, immune escape, and chemoresistance in major B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
17
|
Bhatt R, Ravi D, Evens AM, Parekkadan B. Scaffold-mediated switching of lymphoma metabolism in culture. Cancer Metab 2022; 10:15. [PMID: 36224623 PMCID: PMC9559005 DOI: 10.1186/s40170-022-00291-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL. METHODS This report investigated metabolic functions in 2D and 3D cell cultures using parental and drug-resistant DLBCL cell lines as compared to patient biopsy tissue. RESULTS A 3D culture model controlled the proliferation of parental and drug-resistant DLBCL cell lines, SUDHL-10, SUDHL-10 RR (rituximab resistant), and SUDHL-10 OR (obinutuzumab resistant), as well as retained differential sensitivity to CHOP. The results from metabolic profiling and isotope tracer studies with D-glucose-13C6 indicated metabolic switching in 3D culture when compared with a 2D environment. Analysis of DLBCL patient tumor tissue revealed that the metabolic changes in 3D grown cells were shifted towards that of clinical specimens. CONCLUSION 3D culture restrained DLBCL cell line growth and modulated metabolic pathways that trend towards the biological characteristics of patient tumors. Counter-intuitively, this research thereby contends that 3D matrices can be a tool to control tumor function towards a slower growing and metabolically dormant state that better reflects in vivo tumor physiology.
Collapse
Affiliation(s)
- Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical Health Sciences, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M. The inositol 5-phosphatase INPP5B regulates B cell receptor clustering and signaling. J Cell Biol 2022; 221:e202112018. [PMID: 35878408 PMCID: PMC9351708 DOI: 10.1083/jcb.202112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alaa Droubi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Connor Wallis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Aloka de Sa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Picardi M, Giordano C, Pugliese N, Esposito M, Fatigati M, Muriano F, Rascato MG, Pepa RD, D'Ambrosio A, Vigliar E, Troncone G, Russo D, Mascolo M, Esposito G, Prastaro M, Esposito R, Tocchetti CG, Fonti R, Mainolfi C, Del Vecchio S, Pane F. Liposomal doxorubicin supercharge-containing front-line treatment in patients with advanced-stage diffuse large B-cell lymphoma or classical Hodgkin lymphoma: Preliminary results of a single-centre phase II study. Br J Haematol 2022; 198:847-860. [PMID: 35819919 PMCID: PMC9541306 DOI: 10.1111/bjh.18348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
We evaluated the impact of liposomal doxorubicin (NPLD) supercharge-containing therapy on interim fluorodeoxyglucose positron emission tomography (interim-FDG-PET) responses in high-risk diffuse large B-cell lymphoma (DLBCL) or classical Hodgkin lymphoma (c-HL). In this phase II study (2016-2021), 81 adult patients with advanced-stage DLBCL (n = 53) and c-HL (n = 28) received front-line treatment with R-COMP-dose-intensified (DI) and MBVD-DI. R-COMP-DI consisted of 70 mg/m2 of NPLD plus standard rituximab, cyclophosphamide, vincristine and prednisone for three cycles (followed by three cycles with NPLD de-escalated at 50 mg/m2 ); MBVD-DI consisted of 35 mg/m2 of NPLD plus standard bleomycin, vinblastine and dacarbazine for two cycles (followed by four cycles with NPLD de-escalated at 25 mg/m2 ). Patients underwent R-COMP-DI and MBVD-DI with a median dose intensity of 91% and 94% respectively. At interim-FDG-PET, 72/81 patients (one failed to undergo interim-FDG-PET due to early death) had a Deauville score of ≤3. At end of treatment, 90% of patients reached complete responses. In all, 20 patients had Grade ≥3 adverse events, and four of them required hospitalisation. At a median 21-months of follow-up, the progression-free survival of the entire population was 77.3% (95% confidence interval 68%-88%). Our data suggest that the NPLD supercharge-driven strategy in high-risk DLBCL/c-HL may be a promising option to test in phase III trials, for improving negative interim-FDG-PET cases incidence.
Collapse
Affiliation(s)
- Marco Picardi
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Claudia Giordano
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Novella Pugliese
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Maria Esposito
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Melania Fatigati
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Francesco Muriano
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Maria G. Rascato
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Roberta Della Pepa
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Alessandro D'Ambrosio
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Elena Vigliar
- Department of Public HealthFederico II University Medical SchoolNaplesItaly
| | - Giancarlo Troncone
- Department of Public HealthFederico II University Medical SchoolNaplesItaly
| | - Daniela Russo
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Massimo Mascolo
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Giovanni Esposito
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Mariella Prastaro
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Roberta Esposito
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| | - Carlo G. Tocchetti
- Departments of Translational Medical SciencesFederico II University Medical SchoolNaplesItaly
| | - Rosa Fonti
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Ciro Mainolfi
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Silvana Del Vecchio
- Department of Advanced Biomedical SciencesFederico II University Medical SchoolNaplesItaly
| | - Fabrizio Pane
- Department of Clinical Medicine and SurgeryFederico II University Medical SchoolNaplesItaly
| |
Collapse
|
20
|
Ting CY, Tan SY, Gan GG, Zain SM, Pung YF, Ong DBL, Bee PC. Downregulation of hsa-miR-548d-3p and overexpression of HOXA9 in diffuse large B-cell lymphoma patients and the risk of R-CHOP chemotherapy resistance and disease progression. Int J Lab Hematol 2022; 44:907-917. [PMID: 35830966 DOI: 10.1111/ijlh.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Routine categorization of DLBCL patients into GCB and non-GCB groups by Hans' criteria could not accurately predict chemotherapy resistance and disease progression in patients treated with standard R-CHOP therapy. There is a need to identify better biomarker predictors to enhance assisted selection of chemotherapy regimens for DLBCL patients. AIM OF THE STUDY To identify dysregulated miRNAs and mRNAs that are predictive of resistance to R-CHOP chemotherapy or disease progression in patients with DLBCL. METHODS miRNA and mRNA profiling were performed on archival FFPE samples of the DLBCL patients. miRabel and miRNet bioinformatic tools were applied to determine experimental validated miRNA-mRNA target interaction. The significance of the genomic predictive values was assessed using adjusted odds ratios (AOR) and 95% confidence intervals (CI). RESULTS 19/36 were R-CHOP therapy-resistant whilst 17/36 were R-CHOP therapy-sensitive. Ten dysregulated miRNAs and 12 dysregulated mRNAs were identified in therapy-resistant DLBCL patients. These dysregulated miRNAs and mRNA cause therapy resistance and disease progression in DLBCL patients, most likely via upregulation of the anti-apoptotic protein bcl2, activation of the JAK/STAT signalling pathway and dysregulation of p53 pathway. Downregulation of hsa-miR-548d-3p and overexpression of HOXA9 mRNA were significantly associated with therapy resistance and disease progression in DLBCL patients [hsa-miR-548d-3p AOR: 0.258, 95%CI: 0.097-0.684, p = 0.006]. CONCLUSION DLBCL patients with downregulation of hsa-miR-548d-3p and overexpression of HOXA9 mRNA are more likely to experience R-CHOP therapy resistance and disease progression.
Collapse
Affiliation(s)
- Choo-Yuen Ting
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo-Yong Tan
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Gin-Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamsul-Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Semenyih, selangor, Malaysia
| | - Diana Bee-Lan Ong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ping-Chong Bee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
22
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines 2022; 10:biomedicines10061322. [PMID: 35740344 PMCID: PMC9219780 DOI: 10.3390/biomedicines10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is characterized by a great variability in patient outcomes, resulting in the critical need for identifying new molecular prognostic biomarkers. This study aimed to identify novel circulating prognostic biomarkers based on an miRNA/lncRNA-associated ceRNA network for NHL. Using bioinformatic analysis, we identified the miRNA-lncRNA pairs, and using RT-qPCR, we analyzed their plasma levels in a cohort of 113 NHL patients to assess their prognostic value. Bioinformatic analysis identified SNHG16 and SNHG6 as hsa-miR-20a-5p and hsa-miR-181a-5p sponges, respectively. Plasma levels of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNG6 were significantly associated with more aggressive disease and IPI/FLIPI scores. Moreover, we found that patients with risk expression profiles of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 presented a higher risk of positive bone marrow involvement. Moreover, hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 pairs’ plasma levels were associated with overall survival and progression-free survival of NHL patients, being independent prognostic factors in a multivariate Cox analysis. The prediction models incorporating the ceRNA network expression analysis improved the predictive capacity compared to the model, which only considered the clinicopathological variables. There are still few studies on using the ceRNA network as a potential prognostic biomarker, particularly in NHL, which may permit the implementation of a more personalized management of these patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-069 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000 (ext. 5414)
| |
Collapse
|
23
|
Piazza F, Di Paolo V, Scapinello G, Manni S, Trentin L, Quintieri L. Determinants of Drug Resistance in B-Cell Non-Hodgkin Lymphomas: The Case of Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia. Front Oncol 2022; 11:801124. [PMID: 35087759 PMCID: PMC8787211 DOI: 10.3389/fonc.2021.801124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is a rare subtype of B cell-derived non-Hodgkin lymphoma characterized by the abnormal growth of transformed clonal lymphoplasmacytes and plasma cells. This tumor almost always displays the capability of secreting large amounts of monoclonal immunoglobulins (Ig) of the M class (Waldenström Macroglobulinemia, WM). The clinical manifestations of WM/LPL may range from an asymptomatic condition to a lymphoma-type disease or may be dominated by IgM paraprotein-related symptoms. Despite the substantial progresses achieved over the last years in the therapy of LPL/WM, this lymphoma is still almost invariably incurable and exhibits a propensity towards development of refractoriness to therapy. Patients who have progressive disease are often of difficult clinical management and novel effective treatments are eagerly awaited. In this review, we will describe the essential clinical and pathobiological features of LPL/WM. We will also analyze some key aspects about the current knowledge on the mechanisms of drug resistance in this disease, by concisely focusing on conventional drugs, monoclonal antibodies and novel agents, chiefly Bruton’s Tyrosine Kinase (BTK) inhibitors. The implications of molecular lesions as predictors of response or as a warning for the development of therapy resistance will be highlighted.
Collapse
Affiliation(s)
- Francesco Piazza
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Greta Scapinello
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Sabrina Manni
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. ceRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int J Mol Sci 2021; 23:ijms23010201. [PMID: 35008626 PMCID: PMC8745130 DOI: 10.3390/ijms23010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Research has been focusing on identifying novel biomarkers to better stratify non-Hodgkin lymphoma patients based on prognosis. Studies have demonstrated that lncRNAs act as miRNA sponges, creating ceRNA networks to regulate mRNA expression, and its deregulation is associated with lymphoma development. This study aimed to identify novel circulating prognostic biomarkers based on miRNA/lncRNA-associated ceRNA network for NHL. Herein, bioinformatic analysis was performed to construct ceRNA networks for hsa-miR-150-5p and hsa-miR335-5p. Then, the prognostic value of the miRNA–lncRNA pairs’ plasma levels was assessed in a cohort of 113 NHL patients. Bioinformatic analysis identified MALAT1 and NEAT1 as hsa-miR-150-5p and has-miR-335-5p sponges, respectively. Plasma hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 levels were significantly associated with more aggressive and advanced disease. The overall survival and progression-free survival analysis indicated that hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 pairs’ plasma levels were remarkably associated with NHL patients’ prognosis, being independent prognostic factors in a multivariate Cox analysis. Low levels of hsa-miR-150-5p and hsa-miR-335-5p combined with high levels of the respective lncRNA pair were associated with poor prognosis of NHL patients. Overall, the analysis of ceRNA network expression levels may be a useful prognostic biomarker for NHL patients and could identify patients who could benefit from more intensive treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cohort Studies
- Computational Biology
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, Non-Hodgkin/genetics
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5414)
| |
Collapse
|
25
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
26
|
miRNA- and lncRNA-Based Therapeutics for Non-Hodgkin’s Lymphoma: Moving towards an RNA-Guided Precision Medicine. Cancers (Basel) 2021; 13:cancers13246324. [PMID: 34944942 PMCID: PMC8699447 DOI: 10.3390/cancers13246324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-Hodgkin’s lymphoma (NHL) is a very heterogenous class of hematological cancers, with variable patient outcomes. Therefore, there is an urgent need to develop new and more effective therapeutic approaches. MiRNAs and lncRNAs have emerged as the central gene expression regulators, and their deregulation has been reported to be involved in lymphomagenesis. Given their ability to simultaneously modulate multiple targets, they provide an attractive therapeutic approach to treat NHL patients. In this review, we discuss the scientific rationale behind miRNA/lncRNA-based therapies in NHL and the different targeting technologies, such as antisense oligonucleotides, CRISPR-Cas9, and nanomedicines. Abstract Increasing evidence has demonstrated the functional roles of miRNAs and lncRNAs in lymphoma onset and progression, either by acting as tumor-promoting ncRNAs or as tumor suppressors, emphasizing their appeal as lymphoma therapeutics. In fact, their intrinsic ability to modulate multiple dysregulated genes and/or signaling pathways makes them an attractive therapeutic approach for a multifactorial pathology like lymphoma. Currently, the clinical application of miRNA- and lncRNA-based therapies still faces obstacles regarding effective delivery systems, off-target effects, and safety, which can be minimized with the appropriate chemical modifications and the development of tumor site-specific delivery approaches. Moreover, miRNA- and lncRNA-based therapeutics are being studied not only as monotherapies but also as complements of standard treatment regimens to provide a synergic effect, improving the overall treatment efficacy and reducing the therapeutic resistance. In this review, we summarize the fundamentals of miRNA- and lncRNA-based therapeutics by discussing the different types of delivery systems, with a focus on those that have been investigated in lymphoma in vitro and in vivo. Moreover, we described the ongoing clinical trials of novel miRNA- and lncRNA-based therapeutics in lymphoma.
Collapse
|
27
|
Kalinin S, Malkova A, Sharonova T, Sharoyko V, Bunev A, Supuran CT, Krasavin M. Carbonic Anhydrase IX Inhibitors as Candidates for Combination Therapy of Solid Tumors. Int J Mol Sci 2021; 22:13405. [PMID: 34948200 PMCID: PMC8705727 DOI: 10.3390/ijms222413405] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Combination therapy is becoming imperative for the treatment of many cancers, as it provides a higher chance of avoiding drug resistance and tumor recurrence. Among the resistance-conferring factors, the tumor microenvironment plays a major role, and therefore, represents a viable target for adjuvant therapeutic agents. Thus, hypoxia and extracellular acidosis are known to select for the most aggressive and resilient phenotypes and build poorly responsive regions of the tumor mass. Carbonic anhydrase (CA, EC 4.2.1.1) IX isoform is a surficial zinc metalloenzyme that is proven to play a central role in regulating intra and extracellular pH, as well as modulating invasion and metastasis processes. With its strong association and distribution in various tumor tissues and well-known druggability, this protein holds great promise as a target to pharmacologically interfere with the tumor microenvironment by using drug combination regimens. In the present review, we summarized recent publications revealing the potential of CA IX inhibitors to intensify cancer chemotherapy and overcome drug resistance in preclinical settings.
Collapse
Affiliation(s)
- Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.M.); (T.S.); (V.S.); (M.K.)
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russia;
| | - Anna Malkova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.M.); (T.S.); (V.S.); (M.K.)
| | - Tatiana Sharonova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.M.); (T.S.); (V.S.); (M.K.)
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.M.); (T.S.); (V.S.); (M.K.)
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russia;
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russia;
| | - Claudiu T. Supuran
- Neurofarba Department, Universita degli Studi di Firenze, 50019 Florence, Italy;
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.M.); (T.S.); (V.S.); (M.K.)
| |
Collapse
|
28
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
29
|
Kos IA, Thurner L, Bittenbring JT, Christofyllakis K, Kaddu-Mulindwa D. Advances in Lymphoma Molecular Diagnostics. Diagnostics (Basel) 2021; 11:diagnostics11122174. [PMID: 34943410 PMCID: PMC8699850 DOI: 10.3390/diagnostics11122174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphomas encompass a diverse group of malignant lymphoid neoplasms. Over recent years much scientific effort has been undertaken to identify and understand molecular changes in lymphomas, resulting in a wide range of genetic alterations that have been reported across all types of lymphomas. As many of these changes are now incorporated into the World Health Organization’s defined criteria for the diagnostic evaluation of patients with lymphoid neoplasms, their accurate identification is crucial. Even if many alterations are not routinely evaluated in daily clinical practice, they may still have implications in risk stratification, treatment, prognosis or disease monitoring. Moreover, some alterations can be used for targeted treatment. Therefore, these advances in lymphoma molecular diagnostics in some cases have led to changes in treatment algorithms. Here, we give an overview of and discuss advances in molecular techniques in current clinical practice, as well as highlight some of them in a clinical context.
Collapse
|
30
|
Kambhampati S, Song JY, Herrera AF, Chan WC. Barriers to achieving a cure in lymphoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:965-983. [PMID: 35582375 PMCID: PMC8992454 DOI: 10.20517/cdr.2021.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.
Collapse
Affiliation(s)
- Swetha Kambhampati
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Joo Y. Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alex F. Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
31
|
Simsone Z, Freivalds T, Bēma D, Miķelsone I, Patetko L, Bērziņš J, Harju L, Buiķis I. Cancer microcell initiation and determination. BMC Cancer 2021; 21:1087. [PMID: 34625031 PMCID: PMC8501611 DOI: 10.1186/s12885-021-08813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer remains one of the leading causes of death worldwide, despite the possibilities to detect early onset of the most common cancer types. The search for the optimal therapy is complicated by the cancer diversity within tumors and the unsynchronized development of cancerous cells. Therefore, it is necessary to characterize cancer cell populations after treatment has been applied, because cancer recurrence is not rare. In our research, we concentrated on small cancer cell subpopulation (microcells) that has a potential to be cancer resistance source. Previously made experiments has shown that these cells in small numbers form in specific circumstances after anticancer treatment. METHODS In experiments described in this research, the anticancer agents' paclitaxel and doxorubicin were used to stimulate the induction of microcells in fibroblast, cervix adenocarcinoma, and melanoma cell lines. Mainly for the formation of microcells in melanoma cells. The drug-stimulated cells were then characterized in terms of their formation efficiency, morphology, and metabolic activity. RESULTS We observed the development of cancer microcells and green fluorescent protein (GFP) transfection efficiency after stress. In the time-lapse experiment, we observed microcell formation through a renewal process and GFP expression in the microcells. Additionally, the microcells were viable after anticancer treatment, as indicated by the nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) enzyme activity assay results. Taken together, these findings indicate that cancer microcells are viable and capable of resisting the stress induced by anticancer drugs, and these cells are prone to chemical substance uptake from the environment. CONCLUSION Microcells are not only common to a specific cancer type, but can be found in any tumor type. This study could help to understand cancer emergence and recurrence. The appearance of microcells in the studied cancer cell population could be an indicator of the individual anticancer therapy effectiveness and patient survival.
Collapse
Affiliation(s)
- Zane Simsone
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| | - Tālivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| | - Dina Bēma
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Gailezera Street 1, Riga, LV 1079 Latvia
| | - Indra Miķelsone
- Department of Human Physiology and Biochemistry, Rīga Stradiņš University, Dzirciema Street 16, Riga, LV-1007 Latvia
| | - Liene Patetko
- Laboratory of Bioanalytical and Biodosimetry Methods, Faculty of Biology, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| | - Juris Bērziņš
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| | - Līga Harju
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| | - Indulis Buiķis
- Institute of Cardiology and Regenerative Medicine, University of Latvia, Jelgavas Street 3, Riga, LV-1004 Latvia
| |
Collapse
|
32
|
Ramírez-Villalobos JM, Romo-Sáenz CI, Morán-Santibañez KS, Tamez-Guerra P, Quintanilla-Licea R, Orozco-Flores AA, Romero-Arguelles R, Tamez-Guerra R, Rodríguez-Padilla C, Gomez-Flores R. In Vitro Tumor Cell Growth Inhibition Induced by Lophocereus marginatus (DC.) S. Arias and Terrazas Endophytic Fungi Extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9917. [PMID: 34574841 PMCID: PMC8468531 DOI: 10.3390/ijerph18189917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 02/04/2023]
Abstract
Endophytic fungi have become potential sources of antitumor agents, particularly against antineoplastic-resistant cancer cells, with marginal or nil adverse effects for the oncological patient. Endophytic fungi were isolated from stems of the Lophocereus marginatus cactus, commonly found in Mexico. Methanol extracts were then obtained from fungus liquid cultures and their effects on tumor cell growth against murine lymphoma (L5178Y-R), human colorectal adenocarcinoma (HT-29), and human breast cancer (MCF-7) cells were evaluated at concentrations ranging from 31 µg/mL to 250 µg/mL via the colorimetric 3- [4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide reduction assay, using monkey kidney epithelial (MA-104) and human peripheral mononuclear (PBMC) cells as controls. Furthermore, we obtained the IC50 and the selectivity index (SI) was calculated from the IC50 ratio of normal and tumor cells. In addition, molecular identification of fungi showing cytotoxic activity was determined, using internal transcribed spacer molecular markers. PME-H001, PME-H002, PME-H005, PME-H007, and PME-H008 filamentous fungus strain extracts showed significant (p < 0.05) tumor cell growth inhibition. In particular, they significantly (p < 0.05) inhibited L5178Y-R cell growth, whereas the least susceptible cell line was HT-29. The endophytic strain PME-H008 of Cladosporium sp. caused the highest growth inhibition percentage against L5178Y-R and HT-29 cells with 96.6% (p < 0.01) and 42.5% (p < 0.05) respectively, and the highest SIs against L5178Y-R cells with 2.4 and 2.9 for MA-104 and PBMCs, respectively, whereas the PME-H005 extract showed SIs of 2.77 and 1.5 against MCF-7 and L5178Y-R cells, respectively, as compared with PBMCs. In addition, the endophytic strain PME-H007 of Metarhizium anisopliae caused the highest percentage of growth inhibition (p < 0.01) against MCF-7 cells with 55.8% at 250 µg/mL. We demonstrated in vitro antitumor effects of L. marginatus endophytic fungi. Further research will involve the isolation and in vivo testing of bioactive compounds.
Collapse
Affiliation(s)
- Jesica M. Ramírez-Villalobos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - César I. Romo-Sáenz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Karla S. Morán-Santibañez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Ramiro Quintanilla-Licea
- Departamento de Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Alonso A. Orozco-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Ricardo Romero-Arguelles
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Reyes Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (J.M.R.-V.); (K.S.M.-S.); (P.T.-G.); (A.A.O.-F.); (R.R.-A.); (R.T.-G.); (C.R.-P.)
| |
Collapse
|
33
|
Activation of MEK1/2/Nrf-2 Signaling Pathway by Epstein-Barr Virus-Latent Membrane Protein 1 Enhances Autophagy and Cisplatin Resistance in T-Cell Lymphoma. ACTA ACUST UNITED AC 2021; 2021:6668947. [PMID: 34239803 PMCID: PMC8235988 DOI: 10.1155/2021/6668947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Epstein-Barr virus-latent membrane protein 1 (EBV-LMP1) was associated with lymphoma, but its specific mechanism is still controversial. The study is aimed at studying the regulation of lymphoma resistance by EBV-LMP1 through the MEK1/2/Nrf-2 signaling pathway. First, LMP1 was knocked down in EBV-positive SNK-6 cells and overexpressed in EBV-negative KHYG-1 cells. First, we found that overexpression of LMP1 significantly promoted the resistance of KHYG-1 cells to cisplatin (DDP), which was related to increased autophagy in the cells. In contrast, knockdown of LMP1 expression in SNK-6 cells promoted cellular sensitivity to DDP and reduced the autophagy of cells after DDP treatment. Moreover, specific inhibition of autophagy in KHYG-1 cells significantly attenuated the resistance to DDP caused by overexpression of LMP1, but treatment with rapamycin in SNK-6 cells significantly promoted the autophagy in the cells. Subsequently, overexpression of LMP1 promoted the activation of the MEK1/2-Nrf2 pathway in KYHG-1 cells, whereas knockdown of LMP1 in SNK-6 cells inhibited the activation of the MEK1/2-Nrf2 pathway. Inhibition of MEK1/2/Nrf-2 blocked the promoting effects of LMP1 on lymphoma cell resistance. In conclusion, EBV-LMP1 promotes cell autophagy after DDP treatment by activating the MEK1/2/Nrf-2 signaling pathway in lymphoma cells, thus, enhancing the resistance of lymphoma cells to DDP.
Collapse
|
34
|
Falgàs A, Pallarès V, Unzueta U, Núñez Y, Sierra J, Gallardo A, Alba-Castellón L, Mangues MA, Álamo P, Villaverde A, Vázquez E, Mangues R, Casanova I. Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4 + Diffuse Large B-Cell Lymphoma Cells. Int J Nanomedicine 2021; 16:1869-1888. [PMID: 33716502 PMCID: PMC7944372 DOI: 10.2147/ijn.s289733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Around 40-50% of diffuse large-B cell lymphoma (DLBCL) patients suffer from refractory disease or relapse after R-CHOP first-line treatment. Many ongoing clinical trials for DLBCL patients involve microtubule targeting agents (MTAs), however, their anticancer activity is limited by severe side effects. Therefore, we chose to improve the therapeutic window of the MTA monomethyl auristatin E developing a nanoconjugate, T22-AUR, that selectively targets the CXCR4 receptor, which is overexpressed in many DLBCL cells (CXCR4+) and associated with poor prognosis. METHODS The T22-AUR specificity towards CXCR4 receptor was performed by flow cytometry in different DLBCL cell lines and running biodistribution assays in a subcutaneous mouse model bearing CXCR4+ DLBCL cells. Moreover, we determined T22-AUR cytotoxicity using cell viability assays, cell cycle analysis, DAPI staining and immunohistochemistry. Finally, the T22-AUR antineoplastic effect was evaluated in vivo in an extranodal CXCR4+ DLBCL mouse model whereas the toxicity analysis was assessed by histopathology in non-infiltrated mouse organs and by in vitro cytotoxic assays in human PBMCs. RESULTS We demonstrate that the T22-AUR nanoconjugate displays CXCR4-dependent targeting and internalization in CXCR4+ DLBCL cells in vitro as well as in a subcutaneous DLBCL mouse model. Moreover, it shows high cytotoxic effect in CXCR4+ DLBCL cells, including induction of G2/M mitotic arrest, DNA damage, mitotic catastrophe and apoptosis. Furthermore, the nanoconjugate shows a potent reduction in lymphoma mouse dissemination without histopathological alterations in non-DLBCL infiltrated organs. Importantly, T22-AUR also exhibits lack of toxicity in human PBMCs. CONCLUSION T22-AUR exerts in vitro and in vivo anticancer effect on CXCR4+ DLBCL cells without off-target toxicity. Thus, T22-AUR promises to become an effective therapy for CXCR4+ DLBCL patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Death/drug effects
- Cell Line, Tumor
- Disease Models, Animal
- Endocytosis/drug effects
- Female
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lysosomes/drug effects
- Lysosomes/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Nanoconjugates/therapeutic use
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
- Subcutaneous Tissue/drug effects
- Subcutaneous Tissue/pathology
- Tissue Distribution/drug effects
- Mice
Collapse
Affiliation(s)
- Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Yáiza Núñez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
| | - Jorge Sierra
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Lorena Alba-Castellón
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
| | - Maria Antonia Mangues
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
| | - Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, 08916, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
35
|
Badea M, Grecu MN, Chifiriuc MC, Bleotu C, Popa M, Iorgulescu EE, Avram S, Uivarosi V, Munteanu A, Ghica D, Olar R. Insight on Ni(II) and Cu(II) complexes of biguanide derivatives developed as effective antimicrobial and antitumour agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mihaela Badea
- Faculty of Chemistry, Department of Inorganic Chemistry University of Bucharest Bucharest Romania
| | - Maria Nicoleta Grecu
- Materials Physics Division National Institute for Materials Physics Măgurele Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, Department of Microbiology University of Bucharest Bucharest Romania
- Biology Division Research Institute of the University of Bucharest, ICUB Bucharest Romania
| | - Coralia Bleotu
- Department of Virology Stefan S Nicolau Institute of Virology Bucharest Romania
| | - Marcela Popa
- Faculty of Biology, Department of Microbiology University of Bucharest Bucharest Romania
- Biology Division Research Institute of the University of Bucharest, ICUB Bucharest Romania
| | - Emilia Elena Iorgulescu
- Faculty of Chemistry, Department of Analytical Chemistry University of Bucharest Bucharest Romania
| | - Speranța Avram
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics University of Bucharest Bucharest Romania
| | - Valentina Uivarosi
- Faculty of Pharmacy, Department of General and Inorganic Chemistry Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Alexandra‐Cristina Munteanu
- Faculty of Pharmacy, Department of General and Inorganic Chemistry Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Daniela Ghica
- Materials Physics Division National Institute for Materials Physics Măgurele Romania
| | - Rodica Olar
- Faculty of Chemistry, Department of Inorganic Chemistry University of Bucharest Bucharest Romania
| |
Collapse
|
36
|
Fuertes T, Ramiro AR, de Yebenes VG. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol 2020; 41:932-947. [PMID: 32888820 DOI: 10.1016/j.it.2020.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Non-Hodgkin lymphoma (NHL) is a diverse class of hematological cancers, many of which arise from germinal center (GC)-experienced B cells. Thus GCs, the sites of antibody affinity maturation triggered during immune responses, also provide an environment that facilitates B cell oncogenic transformation. miRNAs provide attractive and mechanistically different strategies to treat these malignancies based on their potential for simultaneous modulation of multiple targets. Here, we discuss the scientific rationale for miRNA-based therapeutics in B cell neoplasias and review recent advances that may help establish a basis for novel candidate miRNA-based therapies for B cell-NHL (B-NHL).
Collapse
Affiliation(s)
- Teresa Fuertes
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Virginia G de Yebenes
- Universidad Complutense de Madrid School of Medicine, Department of Immunology, Ophthalmology and ENT, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
37
|
Drug Resistance in Hematological Malignancies. Int J Mol Sci 2020; 21:ijms21176091. [PMID: 32847013 PMCID: PMC7503602 DOI: 10.3390/ijms21176091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Hematological malignancies define a highly heterogeneous set of blood-, bone marrow-, and organ-associated diseases with highly variable prognoses that constantly relapse upon treatment [...].
Collapse
|
38
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|