1
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Dong Z, Wang Y, Hao C, Cheng Y, Guo X, He Y, Shi Y, Wang S, Li Y, Shi W. Sanghuangporus sanghuang extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1. Front Pharmacol 2023; 14:1136897. [PMID: 37153808 PMCID: PMC10159060 DOI: 10.3389/fphar.2023.1136897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.
Collapse
Affiliation(s)
- Zhenghan Dong
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yachao Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiting Hao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yuan Cheng
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yanyu He
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yueyue Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yunqi Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Shi,
| |
Collapse
|
3
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|