1
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
2
|
Hansen JL, Carroll JE, Seeman TE, Cole SW, Rentscher KE. Lifetime chronic stress Exposures, stress Hormones, and biological Aging: Results from the midlife in the United States (MIDUS) study. Brain Behav Immun 2024:S0889-1591(24)00664-0. [PMID: 39442637 DOI: 10.1016/j.bbi.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Psychosocial stress and adversity have been linked to accelerated aging and increased risk for age-related diseases. Animal and in vitro studies have shown that exposure to stress hormones (catecholamines, glucocorticoids) can impact biological aging processes such as DNA damage and cellular senescence, suggesting they play a key role in links between stress and aging; however, these associations have not been well investigated in humans. We examined cross-sectional associations between chronic stress exposures, stress hormones, and biological aging markers in midlife adults and whether stress hormones mediated associations between stress and aging. Participants were 531 adults aged 26-78 years (Mage = 53.9, 50.1 % female) in the nationally representative Midlife in the United States Refresher cohort. They reported chronic stress exposures in childhood and adulthood (Stressful Life Event Inventory) and provided 12-hour urine samples used to assess norepinephrine, epinephrine, and cortisol. RNA sequencing of peripheral blood mononuclear cells derived aging biomarkers: the DNA damage response (DDR; 30-gene composite), cellular senescence signal p16INK4a (CDKN2A), and the pro-inflammatory senescence-associated secretory phenotype (SASP; 57-gene composite). Regression models adjusting for age, sex, race/ethnicity, BMI, smoking status, alcohol use, and medications revealed that more childhood exposures were associated with higher norepinephrine (β = 0.09, p = 0.04), independent from adult exposures. Higher norepinephrine was associated with elevated DDR expression (β = 0.17, p < 0.001). Higher norepinephrine (β = 0.14, p = 0.003) and epinephrine (β = 0.10, p = 0.02) were both associated with elevated SASP expression. Statistical mediation analyses implicated elevated norepinephrine as a plausible mediator of associations between childhood exposures and both DDR (unstandardized b = 0.005, 95 % CI [0.0002, 0.011]) and SASP (b = 0.002, 95 % CI [0.0001, 0.05]). Findings provide preliminary evidence in humans that stress hormones may impact key biological aging processes and may be a mechanism linking chronic stress exposures in childhood to accelerated aging later in life.
Collapse
Affiliation(s)
- Jenna L Hansen
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Judith E Carroll
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Teresa E Seeman
- Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve W Cole
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Kelly E Rentscher
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
4
|
Nair SG, Benny S, Jose WM, Aneesh T P. Beta-blocker adjunct therapy as a prospective anti-metastatic with cardio-oncologic regulation. Clin Exp Metastasis 2024; 41:9-24. [PMID: 38177715 DOI: 10.1007/s10585-023-10258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The prevailing treatment stratagem in cancer therapy still challenges the dilemma of a probable metastatic spread following an initial diagnosis. Including an anti-metastatic agent demands a significant focus to overrule the incidence of treatment failures. Adrenergic stimulation underlying the metastatic spread paved the way for beta blockers as a breakthrough in repurposing as an anti-metastatic agent. However, the current treatment approach fails to fully harness the versatile potential of the drug in inhibiting probable metastasis. The beta blockers were seen to show a myriad of grip over the pro-metastatic and prognostic parameters of the patient. Novel interventions in immune therapy, onco-hypertension, surgery-induced stress, induction of apoptosis and angiogenesis inhibition have been used as evidence to interpret our objective of discussing the potential adjuvant role of the drug in the existing anti-cancer regimens. Adding weight to the relative incidence of onco-hypertension as an unavoidable side effect from chemotherapy, the slot for an anti-hypertensive agent is necessitated, and we try to suggest beta-blockers to fill this position. However, pointing out the paucity in the clinical study, we aim to review the current status of beta blockers under this interest to state how the drug should be included as a drug of choice in every patient undergoing cancer treatment.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi, Kerala, 682041, India.
| | - Aneesh T P
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
5
|
Liang S, Hess J. Tumor Neurobiology in the Pathogenesis and Therapy of Head and Neck Cancer. Cells 2024; 13:256. [PMID: 38334648 PMCID: PMC10854684 DOI: 10.3390/cells13030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
The neurobiology of tumors has attracted considerable interest from clinicians and scientists and has become a multidisciplinary area of research. Neural components not only interact with tumor cells but also influence other elements within the TME, such as immune cells and vascular components, forming a polygonal relationship to synergistically facilitate tumor growth and progression. This review comprehensively summarizes the current state of the knowledge on nerve-tumor crosstalk in head and neck cancer and discusses the potential underlying mechanisms. Several mechanisms facilitating nerve-tumor crosstalk are covered, such as perineural invasion, axonogenesis, neurogenesis, neural reprogramming, and transdifferentiation, and the reciprocal interactions between the nervous and immune systems in the TME are also discussed in this review. Further understanding of the nerve-tumor crosstalk in the TME of head and neck cancer may provide new nerve-targeted treatment options and help improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Siyuan Liang
- Department of Otorhinolaryngology, Head and Neck Tumors, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Tumors, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Di Fonte R, Strippoli S, Garofoli M, Cormio G, Serratì S, Loizzi V, Fasano R, Arezzo F, Volpicella M, Derakhshani A, Guida M, Porcelli L, Azzariti A. Cervical cancer benefits from trabectedin combination with the β-blocker propranolol: in vitro and ex vivo evaluations in patient-derived organoids. Front Cell Dev Biol 2023; 11:1178316. [PMID: 37384250 PMCID: PMC10294430 DOI: 10.3389/fcell.2023.1178316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Cervical cancer (CC) is characterized by genomic alterations in DNA repair genes, which could favor treatment with agents causing DNA double-strand breaks (DSBs), such as trabectedin. Hence, we evaluated the capability of trabectedin to inhibit CC viability and used ovarian cancer (OC) models as a reference. Since chronic stress may promote gynecological cancer and may hinder the efficacy of therapy, we investigated the potential of targeting β-adrenergic receptors with propranolol to enhance trabectedin efficacy and change tumor immunogenicity. Methods: OC cell lines, Caov-3 and SK-OV-3, CC cell lines, HeLa and OV2008, and patient-derived organoids were used as study models. MTT and 3D cell viability assays were used for drug(s) IC50 determination. The analysis of apoptosis, JC-1 mitochondrial membrane depolarization, cell cycle, and protein expression was performed by flow cytometry. Cell target modulation analyses were carried out by gene expression, Western blotting, immunofluorescence, and immunocytochemistry. Results: Trabectedin reduced the proliferation of both CC and OC cell lines and notably of CC patient-derived organoids. Mechanistically, trabectedin caused DNA DSBs and S-phase cell cycle arrest. Despite DNA DSBs, cells failed the formation of nuclear RAD51 foci and underwent apoptosis. Under norepinephrine stimulation, propranolol enhanced trabectedin efficacy, further inducing apoptosis through the involvement of mitochondria, Erk1/2 activation, and the increase of inducible COX-2. Notably, trabectedin and propranolol affected the expression of PD1 in both CC and OC cell lines. Conclusion: Overall, our results show that CC is responsive to trabectedin and provide translational evidence that could benefit CC treatment options. Our study pointed out that combined treatment offset trabectedin resistance caused by β-adrenergic receptor activation in both ovarian and cervical cancer models.
Collapse
Affiliation(s)
| | | | | | | | | | - Vera Loizzi
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | - Francesca Arezzo
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, Policlinico Hospital, “Aldo Moro” University of Bari, Bari, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Afshin Derakhshani
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michele Guida
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | | |
Collapse
|
7
|
Timmins J. Recognition of DNA Lesions. Int J Mol Sci 2023; 24:ijms24119682. [PMID: 37298630 DOI: 10.3390/ijms24119682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The average human cell suffers from approximately 104-105 DNA lesions per day [...].
Collapse
Affiliation(s)
- Joanna Timmins
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
8
|
Kohutova A, Münzova D, Pešl M, Rotrekl V. α 1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1). ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:281-291. [PMID: 37307375 DOI: 10.2478/acph-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 06/14/2023]
Abstract
Methoxamine (Mox) is a well-known α1-adrenoceptor agonist, clinically used as a longer-acting analogue of epinephrine. 1R,2S-Mox (NRL001) has been also undergoing clinical testing to increase the canal resting pressure in patients with bowel incontinence. Here we show, that Mox hydrochloride acts as an inhibitor of base excision repair (BER). The effect is mediated by the inhibition of apurinic/apyrimidinic endonuclease APE1. We link this observation to our previous report showing the biologically relevant effect of Mox on BER - prevention of converting oxidative DNA base damage to double-stranded breaks. We demonstrate that its effect is weaker, but still significant when compared to a known BER inhibitor methoxyamine (MX). We further determined Mox's relative IC 50 at 19 mmol L-1, demonstrating a significant effect of Mox on APE1 activity in clinically relevant concentrations.
Collapse
Affiliation(s)
- Aneta Kohutova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Dita Münzova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Martin Pešl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| | - Vladimir Rotrekl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| |
Collapse
|
9
|
Hankittichai P, Thaklaewphan P, Wikan N, Ruttanapattanakul J, Potikanond S, Smith DR, Nimlamool W. Resveratrol Enhances Cytotoxic Effects of Cisplatin by Inducing Cell Cycle Arrest and Apoptosis in Ovarian Adenocarcinoma SKOV-3 Cells through Activating the p38 MAPK and Suppressing AKT. Pharmaceuticals (Basel) 2023; 16:ph16050755. [PMID: 37242538 DOI: 10.3390/ph16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In the current study, we identified a mechanism of resveratrol (RES) underlying its anti-cancer properties against human ovarian adenocarcinoma SKOV-3 cells. We investigated its anti-proliferative and apoptosis-inducing effects in combination with cisplatin, using cell viability assay, flow cytometry, immunofluorescence study and Western blot analysis. We discovered that RES suppressed cancer cell proliferation and stimulated apoptosis, especially when combined with cisplatin. This compound also inhibited SKOV-3 cell survival, which may partly be due to its potential to inhibit protein kinase B (AKT) phosphorylation and induce the S-phase cell cycle arrest. RES in combination with cisplatin strongly induced cancer cell apoptosis through activating the caspase-dependent cascade, which was associated with its ability to stimulate nuclear phosphorylation of p38 mitogen-activated protein kinase (MAPK), well recognized to be involved in transducing environmental stress signals. RES-induced p38 phosphorylation was very specific, and the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) was not mainly affected. Taken together, our study provides accumulated evidence that RES represses proliferation and promotes apoptosis in SKOV-3 ovarian cancer cells through activating the p38 MAPK pathway. It is interesting that this active compound may be used as an effective agent to sensitize ovarian cancer to apoptosis induced by standard chemotherapies.
Collapse
Affiliation(s)
- Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
11
|
Wu Y, Zhou L, Zhang X, Yang X, Niedermann G, Xue J. Psychological distress and eustress in cancer and cancer treatment: Advances and perspectives. SCIENCE ADVANCES 2022; 8:eabq7982. [PMID: 36417542 PMCID: PMC9683699 DOI: 10.1126/sciadv.abq7982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/03/2022] [Indexed: 05/31/2023]
Abstract
Facing cancer diagnosis, patients with cancer are prone to psychological stress and consequent psychological disorders. The association between psychological stress and cancer has long been a subject of high interest. To date, preclinical studies have gradually uncovered the promotive effects of psychological distress on tumor hallmarks. In contrast, eustress may exert suppressive effects on tumorigenesis and beneficial effects on tumor treatment, which brings a practicable means and psychosocial perspective to cancer treatment. However, the underlying mechanisms remain incompletely understood. Here, by focusing on the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of distress and eustress on tumorigenesis, the tumor microenvironment, and tumor treatment. We also discuss the findings of clinical studies on stress management in patients with cancer. Last, we summarize questions that remain to be addressed and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Yuanjun Wu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Laiyan Zhou
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuanwei Zhang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Yang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany, German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Jianxin Xue
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Polsky LR, Rentscher KE, Carroll JE. Stress-induced biological aging: A review and guide for research priorities. Brain Behav Immun 2022; 104:97-109. [PMID: 35661679 PMCID: PMC10243290 DOI: 10.1016/j.bbi.2022.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/29/2022] [Indexed: 01/13/2023] Open
Abstract
Exposure to chronic adverse conditions, and the resultant activation of the neurobiological response cascade, has been associated with an increased risk of early onset of age-related disease and, recently, with an older biological age. This body of research has led to the hypothesis that exposure to stressful life experiences, when occurring repeatedly or over a prolonged period, may accelerate the rate at which the body ages. The mechanisms through which chronic psychosocial stress influences distinct biological aging pathways to alter rates of aging likely involve multiple layers in the physiological-molecular network. In this review, we integrate research using animal, human, and in vitro models to begin to delineate the distinct pathways through which chronic psychosocial stress may impact biological aging, as well as the neuroendocrine mediators (i.e., norepinephrine, epinephrine, and glucocorticoids) that may drive these effects. Findings highlight key connections between stress and aging, namely cellular metabolic activity, DNA damage, telomere length, cellular senescence, and inflammatory response patterns. We conclude with a guiding framework and conceptual model that outlines the most promising biological pathways by which chronic adverse conditions could accelerate aging and point to key missing gaps in knowledge where future research could best answer these pressing questions.
Collapse
Affiliation(s)
- Lilian R Polsky
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Kelly E Rentscher
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States; Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, United States.
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| |
Collapse
|
13
|
Wang J, Lu S, Meng Y, Zhou X, Fu W. Beta adrenergic blockade and clinical outcomes in patients with colorectal cancer: A systematic review and meta-analysis. Eur J Pharmacol 2022; 929:175135. [DOI: 10.1016/j.ejphar.2022.175135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
14
|
Mravec B. Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Med 2021; 11:903-921. [PMID: 34953048 PMCID: PMC8855902 DOI: 10.1002/cam4.4488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published in the last two decades have clearly demonstrated that the nervous system plays a significant role in carcinogenesis, the progression of cancer, and the development of metastases. These studies, combining oncological and neuroscientific approaches, created the basis for the emergence of a new field in oncology research, the so‐called “neurobiology of cancer.” The concept of the neurobiology of cancer is based on several facts: (a) psychosocial factors influence the incidence and progression of cancer diseases; (b) the nervous system affects DNA mutations and oncogene‐related signaling; (c) the nervous system modulates tumor‐related immune responses; (d) tumor tissues are innervated; (e) neurotransmitters released from nerves innervating tumor tissues affect tumor growth and metastasis; (f) alterations or modulation of nervous system activity affects the incidence and progression of cancers; (g) tumor tissue affects the nervous system. The aim of this review is to characterize the pillars that create the basis of cancer neurobiology, to describe recent research advances of the nervous system's role in cancer diseases, and to depict potential clinical implications for oncology.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
16
|
Eckerling A, Ricon-Becker I, Sorski L, Sandbank E, Ben-Eliyahu S. Stress and cancer: mechanisms, significance and future directions. Nat Rev Cancer 2021; 21:767-785. [PMID: 34508247 DOI: 10.1038/s41568-021-00395-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
The notion that stress and cancer are interlinked has dominated lay discourse for decades. More recent animal studies indicate that stress can substantially facilitate cancer progression through modulating most hallmarks of cancer, and molecular and systemic mechanisms mediating these effects have been elucidated. However, available clinical evidence for such deleterious effects is inconsistent, as epidemiological and stress-reducing clinical interventions have yielded mixed effects on cancer mortality. In this Review, we describe and discuss specific mediating mechanisms identified by preclinical research, and parallel clinical findings. We explain the discrepancy between preclinical and clinical outcomes, through pointing to experimental strengths leveraged by animal studies and through discussing methodological and conceptual obstacles that prevent clinical studies from reflecting the impacts of stress. We suggest approaches to circumvent such obstacles, based on targeting critical phases of cancer progression that are more likely to be stress-sensitive; pharmacologically limiting adrenergic-inflammatory responses triggered by medical procedures; and focusing on more vulnerable populations, employing personalized pharmacological and psychosocial approaches. Recent clinical trials support our hypothesis that psychological and/or pharmacological inhibition of excess adrenergic and/or inflammatory stress signalling, especially alongside cancer treatments, could save lives.
Collapse
Affiliation(s)
- Anabel Eckerling
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Grelet S, Fréreux C, Obellianne C, Noguchi K, Howley BV, Dalton AC, Howe PH. TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis. Life Sci Alliance 2021; 5:5/2/e202101261. [PMID: 34810279 PMCID: PMC8645334 DOI: 10.26508/lsa.202101261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor axonogenesis is an emerging hallmark of cancer and TGF-beta is a well-known cytokine involved in the control of cancer progression. In this study we identify a novel function for the TGF-beta signaling in cancer aggressivity by promoting cancer axonogenesis. Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA .,Mitchell Cancer Institute, The University of South Alabama, Mobile, AL, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Clémence Obellianne
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Ken Noguchi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Center for Family Medicine, Sioux Falls, SD, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA .,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Valente VB, de Melo Cardoso D, Kayahara GM, Nunes GB, Tjioe KC, Biasoli ÉR, Miyahara GI, Oliveira SHP, Mingoti GZ, Bernabé DG. Stress hormones promote DNA damage in human oral keratinocytes. Sci Rep 2021; 11:19701. [PMID: 34611221 PMCID: PMC8492616 DOI: 10.1038/s41598-021-99224-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic stress increases the systemic levels of stress hormones norepinephrine and cortisol. As well as tobacco-specific carcinogen NNK (4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone), they can induce expressive DNA damage contributing to the cancer development. However, it is unknown whether stress hormones have genotoxic effects in oral keratinocytes. This study investigated the effects of stress hormones on DNA damage in a human oral keratinocyte cell line (NOK-SI). NOK-SI cells stimulated with norepinephrine or cortisol showed higher DNA damage compared to untreated cells. Norepinephrine-induced DNA damage was reversed by pre-treatment with beta-adrenergic blocker propranolol. Cells treated with NNK combined to norepinephrine displayed reduced levels of caspases 3 and 7. Cortisol also reduced the activity of pro-apoptotic enzymes. NNK or norepinephrine promoted single-strand breaks and alkali-label side breaks in the DNA of NOK-SI cells. Pre-treatment of cells with propranolol abolished these effects. Carcinogen NNK in the presence or absence of cortisol also induced DNA damage of these cells. The genotoxic effects of cortisol alone and hormone combined with NNK were blocked partially and totally, respectively, by the glucocorticoid receptor antagonist RU486. DNA damage promoted by NNK or cortisol and carcinogen combined to the hormone led to intracellular γH2AX accumulation. The effects caused by NNK and cortisol were reversed by propranolol and glucocorticoid receptor antagonist RU486, respectively. Propranolol inhibited the oxidation of basis induced by NNK in the presence of DNA-formamidopyrimidine glycosylase. DNA breaks induced by norepinephrine in the presence or absence of NNK resulted in higher 8OHdG cellular levels. This effect was also induced through beta-adrenergic receptors. Together, these findings indicate that stress hormones induce DNA damage of oral keratinocytes and could contribute to oral carcinogenesis.
Collapse
Affiliation(s)
- Vitor Bonetti Valente
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Diovana de Melo Cardoso
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giseli Mitsuy Kayahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giovana Barros Nunes
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Kellen Cristine Tjioe
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Éder Ricardo Biasoli
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Glauco Issamu Miyahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Sandra Helena Penha Oliveira
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Gisele Zoccal Mingoti
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Daniel Galera Bernabé
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
| |
Collapse
|
19
|
Dash S, Yoder S, Mesa T, Smith A, Cen L, Eschrich S, Armaiz-Pena GN, Monteiro ANA. Effects of long-term norepinephrine treatment on normal immortalized ovarian and fallopian tube cells. Sci Rep 2021; 11:14334. [PMID: 34253763 PMCID: PMC8275603 DOI: 10.1038/s41598-021-93506-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
Sustained adrenergic stimulation by norepinephrine (NE) contributes to ovarian carcinoma metastasis and impairment of chemotherapy response. Although the effect of sustained NE stimulation in cancer progression is well established, less is known about its role in cancer initiation. To determine the extent to which stress hormones influence ovarian cancer initiation, we conducted a long-term (> 3 months; > 40 population doublings) experiment in which normal immortalized fallopian tube secretory (iFTSEC283) and ovarian surface epithelial (iOSE11) cell lines and their isogenic pairs containing a p53 mutation (iFTSEC283p53R175H; iOSE11p53R175H), were continuously exposed to NE (100 nM, 1 μM, 10 μM). Fallopian tube cells displayed a p53-independent increase in proliferation and colony-forming ability in response to NE, while ovarian surface epithelial cells displayed a p53-independent decrease in both assays. Fallopian tube cells with mutant p53 showed a mild loss of chromosomes and TP53 status was also a defining factor in transcriptional response of fallopian tube cells to long-term NE treatment.
Collapse
Affiliation(s)
- Sweta Dash
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Magnolia Drive, Tampa, FL, 1290233612, USA
- Cancer Biology Ph.D. Program, University of South Florida Tampa, Tampa, FL, 33612, USA
| | - Sean Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tania Mesa
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew Smith
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Data Sharing Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven Eschrich
- Data Sharing Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Guillermo N Armaiz-Pena
- Department of Basic Sciences, Pharmacology Division, School of Medicine, Ponce Health Sciences University and Divisions of Cancer Biology and Women's Health, Ponce Research Institute, Ponce, PR, USA
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Magnolia Drive, Tampa, FL, 1290233612, USA.
| |
Collapse
|
20
|
Mehedințeanu AM, Sfredel V, Stovicek PO, Schenker M, Târtea GC, Istrătoaie O, Ciurea AM, Vere CC. Assessment of Epinephrine and Norepinephrine in Gastric Carcinoma. Int J Mol Sci 2021; 22:ijms22042042. [PMID: 33670813 PMCID: PMC7922341 DOI: 10.3390/ijms22042042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of our study was to assess the sympathetic nervous system’s involvement in the evolution of gastric carcinoma in patients by analyzing the mediators of this system (epinephrine and norepinephrine), as well as by analyzing the histological expression of the norepinephrine transporter (NET). We conducted an observational study including 91 patients diagnosed with gastric carcinoma and an additional 200 patients without cancer between November 2017 and October 2018. We set the primary endpoint as mortality from any cause in the first two years after enrolment in the study. The patients were monitored by a 24-h Holter electrocardiogram (ECG) to assess sympathetic or parasympathetic predominance. Blood was also collected from the patients to measure plasma free metanephrine (Meta) and normetanephrine (N-Meta), and tumor histological samples were collected for the analysis of NET expression. All of this was performed prior to the application of any antineoplastic therapy. Each patient was monitored for two years. We found higher heart rates in patients with gastric carcinoma than those without cancer. Regarding Meta and N-Meta, elevated levels were recorded in the patients with gastric carcinoma, correlating with the degree of tumor differentiation and other negative prognostic factors such as tumor invasion, lymph node metastasis, and distant metastases. Elevated Meta and N-Meta was also associated with a poor survival rate. All these data suggest that the predominance of the sympathetic nervous system’s activity predicts increased gastric carcinoma severity.
Collapse
Affiliation(s)
- Alina Maria Mehedințeanu
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Puiu Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing, Târgu Jiu Subsidiary, Titu Maiorescu University, 04317 Bucharest, Romania;
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Georgică Costinel Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (G.C.T.); (O.I.)
| | - Octavian Istrătoaie
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (G.C.T.); (O.I.)
| | - Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
21
|
Mravec B, Horvathova L, Hunakova L. Neurobiology of Cancer: the Role of β-Adrenergic Receptor Signaling in Various Tumor Environments. Int J Mol Sci 2020; 21:ijms21217958. [PMID: 33114769 PMCID: PMC7662752 DOI: 10.3390/ijms21217958] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The development and progression of cancer depends on both tumor micro- and macroenvironments. In addition, psychosocial and spiritual “environments” might also affect cancer. It has been found that the nervous system, via neural and humoral pathways, significantly modulates processes related to cancer at the level of the tumor micro- and macroenvironments. The nervous system also mediates the effects of psychosocial and noetic factors on cancer. Importantly, data accumulated in the last two decades have clearly shown that effects of the nervous system on cancer initiation, progression, and the development of metastases are mediated by the sympathoadrenal system mainly via β-adrenergic receptor signaling. Here, we provide a new complex view of the role of β-adrenergic receptor signaling within the tumor micro- and macroenvironments as well as in mediating the effects of the psychosocial and spiritual environments. In addition, we describe potential preventive and therapeutic implications.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
| | - Lubica Horvathova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 814 39 Bratislava, Slovakia;
| | - Luba Hunakova
- Institute of Microbiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| |
Collapse
|
22
|
Zoledronic Acid Abrogates Restraint Stress-Induced Macrophage Infiltration, PDGF-AA Expression, and Ovarian Cancer Growth. Cancers (Basel) 2020; 12:cancers12092671. [PMID: 32962103 PMCID: PMC7563308 DOI: 10.3390/cancers12092671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Biobehavioral disorders can negatively impact patients with ovarian cancer. Growing evidence suggests that chronic stress can promote tumor progression, the release of inflammatory mediators, and macrophage infiltration into the tumor. However, the role of stress hormones in regulating cancer cell/macrophage crosstalk remains unclear. This study aimed to assess the role of stress hormone-stimulated macrophages in modulating inflammatory networks and ovarian cancer biology. Our data show that stress hormones induced secretion of inflammatory proteins in ovarian cancer cell/macrophage co-cultures. Furthermore, we show that restraint stress leads to cancer growth, macrophage infiltration, and PDGF-AA protein expression in animal models of ovarian cancer. Conversely, zoledronic acid was able to prevent the effects of restraint stress on ovarian cancer growth. Overall, our data suggest a role for stress hormone-stimulated macrophages in ovarian cancer progression and suggest the involvement of PDGF-AA as a key mediator of this process. Abstract Multiple studies suggest that chronic stress accelerates the growth of existing tumors by activating the sympathetic nervous system. Data suggest that sustained adrenergic signaling can induce tumor growth, secretion of pro-inflammatory cytokines, and macrophage infiltration. Our goal was to study the role of adrenergic-stimulated macrophages in ovarian cancer biology. Cytokine arrays were used to assess the effect of adrenergic stimulation in pro-tumoral cytokine networks. An orthotopic model of ovarian cancer was used to assess the in vivo effect of daily restraint stress on tumor growth and adrenergic-induced macrophages. Cytokine analyses showed that adrenergic stimulation modulated pro-inflammatory cytokine secretion in a SKOV3ip1 ovarian cancer cell/U937 macrophage co-culture system. Among these, platelet-derived growth factor AA (PDGF-AA), epithelial cell-derived neutrophil-activating peptide (ENA-78), Angiogenin, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-5 (IL-5), Lipocalin-2, macrophage migration inhibitory factor (MIF), and transferrin receptor (TfR) were upregulated. Enriched biological processes included cytokine-mediated signaling pathways and positive regulation of cell proliferation. In addition, daily restraint stress increased ovarian cancer growth, infiltration of CD68+ macrophages, and expression of PDGF-AA in orthotopic models of ovarian cancer (SKOV3ip1 and HeyT30), while zoledronic acid, a macrophage-depleting agent, abrogated this effect. Furthermore, in ovarian cancer patients, high PDGFA expression correlated with worse outcomes. Here, it is shown that the adrenergic regulation of macrophages and PDGFA might play a role in ovarian cancer progression.
Collapse
|