1
|
Sun S, Yin J, Wei H, Zeng Y, Jia H, Jin Y. Long-Term Efficacy and Safety of High-Frequency Spinal Stimulation for Chronic Pain: A Meta-Analysis of Randomized Controlled Trials. Clin J Pain 2024; 40:415-427. [PMID: 38595082 DOI: 10.1097/ajp.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVE The aim of our meta-analysis was to systematically assess the enduring effectiveness and safety of high-frequency spinal stimulation (HF-SCS) in the management of chronic pain. METHODS We developed a comprehensive literature search strategy to identify clinical trials investigating the efficacy of high-frequency spinal stimulation for chronic pain. The search was conducted in multiple databases, including Web of Science, Cochrane, PubMed, and Embase, covering the period from 2004 to 2023. The inclusion and exclusion criteria established for this study were applied to screen the eligible literature by carefully reviewing abstracts and, when necessary, examining the full text of selected articles. To assess the quality of the included studies, we utilized the Risk of Bias assessment tool provided by the Cochrane Collaboration. The PRISMA method was followed for the selection of articles, and the quality of the articles was evaluated using the risk assessment table for bias provided by the Cochrane Collaboration. Meta-analysis of the selected studies was performed using Review Manager 5.4 and STATA 16.0. Effect sizes for continuous data were reported as mean differences (MD) or standardized mean differences (SMD), while categorical data were analyzed using relative risks (RR). RESULTS According to our predefined literature screening criteria, a total of seven English-language randomized controlled trials (RCTs) were included in the meta-analysis. The findings from the meta-analysis demonstrated that HF-SCS exhibited superior efficacy in the long-term treatment of chronic pain when compared with the control group (RR=2.44, 95% CI: 1.20-4.96, P =0.01). Furthermore, HF-SCS demonstrated a statistically significant improvement in the Oswestry Disability Index score (mean difference MD=3.77, 95% CI: 1.17-6.38, P =0.005). However, for pain assessment (standardized mean difference SMD=-0.59, 95% CI: -1.28 to 0.10, P =0.09), Patient Global Impression of Improvement (PGI-I) score (MD=0.11, 95% CI: -0.66 to 0.88, P =0.78 for 6 months; MD=0.02, 95% CI: -0.42 to 0.43, P =0.97 for 12 mo), Clinical Global Impression of Improvement (CGI-I) score (MD=-0.58, 95% CI: -1.62 to 0.43, P =0.27 for 6 mo; MD=-0.23, 95% CI: -0.94 to 0.48, P =0.52 for 12 mo), and occurrence of adverse effects (odds ratio [OR]=0.77, 95% CI: 0.23-2.59, P =0.67), HF-SCS did not show statistically sufficient effects compared with the control group. CONCLUSIONS The findings from our comprehensive review and meta-analysis offer encouraging data about the prolonged efficacy and safety of HF-SCS in chronic pain management on some but not all outcomes. Recognizing the constraints of the existing evidence is crucial. Additional clinical trials, meticulously planned and stringent, are essential to bolster the current body of evidence and reach more conclusive findings.
Collapse
Affiliation(s)
- Sisi Sun
- Department of Pain Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
2
|
de Geus TJ, Franken G, Joosten EA. Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance. Mol Pain 2023; 19:17448069231193368. [PMID: 37488684 PMCID: PMC10504849 DOI: 10.1177/17448069231193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Spinal cord stimulation (SCS) is a last resort treatment for pain relief in painful diabetic peripheral neuropathy (PDPN) patients. However, the effectivity of SCS in PDPN is limited. New SCS paradigms such as high frequency (HF) and differential target multiplexed (DTM) might improve responder rates and efficacy of SCS-induced analgesia in PDPN patients, and are suggested to modulate the inflammatory balance and glial response in the spinal dorsal horn. The aim of this study was to research the effects of Con-, HF- and DTM-SCS on pain behavior and the spinal inflammatory balance in an animal model of PDPN. Streptozotocin-induced PDPN animals were stimulated for 48 hours with either Con-SCS (50Hz), HF-SCS (1200Hz) or DTM-SCS (combination of Con- and HF-SCS). Mechanical hypersensitivity was assessed using Von Frey (VF) test and the motivational aspects of pain were assessed using the mechanical conflict avoidance system (MCAS). The inflammatory balance and glial response were analyzed in the dorsal spinal cord based on RNA expression of pro- and anti-inflammatory cytokines (Tnf-α, Il-1ß, Il-4, Il-10), a microglia marker (Itgam), an astrocyte marker (Gfap), a T-cell marker (Cd3d), microglia proliferation markers (Irf8, Adgre1) and P2X4, p13-MAPK, BDNF signaling markers (P2x4, Mapk14, Bdnf). The results show that Con-, HF-, and DTM-SCS significantly decreased hypersensitivity after 48 hours of stimulation compared to Sham-SCS in PDPN animals, but at the same time did not affect escape latency in the MCAS. At the molecular level, Con-SCS resulted in a significant increase in spinal pro-inflammatory cytokine Tnf-α after 48 hours compared to DTM-SCS and Sham-SCS. In summary, Con-SCS showed a shift of the inflammatory balance towards a pro-inflammatory state whilst HF- and DTM-SCS shifted the balance towards an anti-inflammatory state. These findings suggest that the underlying mechanism of Con-SCS induced pain relief in PDPN differs from that induced by HF- and DTM-SCS.
Collapse
Affiliation(s)
- Thomas J. de Geus
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Glenn Franken
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Elbert A Joosten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
3
|
de Geus TJ, Franken G, Joosten EAJ. Spinal Cord Stimulation Paradigms and Pain Relief: A Preclinical Systematic Review on Modulation of the Central Inflammatory Response in Neuropathic Pain. Neuromodulation 2023; 26:25-34. [PMID: 35931643 DOI: 10.1016/j.neurom.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance. The aim of this systematic review is to summarize and understand the effects of different SCS paradigms on the central inflammatory balance in the spinal cord. MATERIALS AND METHODS A systematic literature search was conducted using MEDLINE, Embase, and PubMed. All articles studying the effects of SCS on inflammatory or glial markers in neuropathic pain models were included. A quality assessment was performed on predetermined entities of bias. RESULTS A total of 11 articles were eligible for this systematic review. In general, induction of neuropathic pain in rats results in a proinflammatory state and at the same time an increased activity/expression of microglial and astroglial cells in the spinal cord dorsal horn. Conventional SCS seems to further enhance this proinflammatory state and increase the messenger RNA expression of microglial markers, but it also results in a decrease in microglial protein marker levels. High-frequency and especially differential targeted multiplexed SCS can not only restore the balance between pro- and anti-inflammatory molecules but also minimize the overexpression/activation of glial cells. Quality assessment and risk of bias analysis of the studies included make it clear that the results of these preclinical studies must be interpreted with caution. CONCLUSIONS In summary, the preclinical findings tend to indicate that there is a distinct SCS paradigm-related effect in the modulation of the central inflammatory balance of the spinal dorsal horn.
Collapse
Affiliation(s)
- Thomas J de Geus
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Sun C, Tao X, Wan C, Zhang X, Zhao M, Xu M, Wang P, Liu Y, Wang C, Xi Q, Song T. Spinal Cord Stimulation Alleviates Neuropathic Pain by Attenuating Microglial Activation via Reducing Colony-Stimulating Factor 1 Levels in the Spinal Cord in a Rat Model of Chronic Constriction Injury. Anesth Analg 2022; 135:178-190. [PMID: 35709447 PMCID: PMC9172898 DOI: 10.1213/ane.0000000000006016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spinal cord stimulation (SCS) is an emerging, minimally invasive procedure used to treat patients with intractable chronic pain conditions. Although several signaling pathways have been proposed to account for SCS-mediated pain relief, the precise mechanisms remain poorly understood. Recent evidence reveals that injured sensory neuron-derived colony-stimulating factor 1 (CSF1) induces microglial activation in the spinal cord, contributing to the development of neuropathic pain (NP). Here, we tested the hypothesis that SCS relieves pain in a rat model of chronic constriction injury (CCI) by attenuating microglial activation via blocking CSF1 to the spinal cord. METHODS Sprague-Dawley rats underwent sciatic nerve ligation to induce CCI and were implanted with an epidural SCS lead. SCS was delivered 6 hours per day for 5 days. Some rats received a once-daily intrathecal injection of CSF1 for 3 days during SCS. RESULTS Compared with naive rats, CCI rats had a marked decrease in the mechanical withdrawal threshold of the paw, along with increased microglial activation and augmented CSF1 levels in the spinal dorsal horn and dorsal root ganglion, as measured by immunofluorescence or Western blotting. SCS significantly increased the mechanical withdrawal threshold and attenuated microglial activation in the spinal dorsal horn in CCI rats, which were associated with reductions in CSF1 levels in the spinal dorsal horn and dorsal roots but not dorsal root ganglion. Moreover, intrathecal injection of CSF1 completely abolished SCS-induced changes in the mechanical withdrawal threshold and activation of microglia in the spinal dorsal horn in CCI rats. CONCLUSIONS SCS reduces microglial activation in the spinal cord and alleviates chronic NP, at least in part by inhibiting the release of CSF1 from the dorsal root ganglion ipsilateral to nerve injury.
Collapse
Affiliation(s)
- Cong Sun
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pain Medicine, People's Hospital affiliated to China Medical University, Shenyang, China
| | - Xueshu Tao
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chengfu Wan
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Zhang
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mengnan Zhao
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Miao Xu
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Pinying Wang
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yan Liu
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenglong Wang
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qi Xi
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tao Song
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Bazzari AH, Bazzari FH. Advances in targeting central sensitization and brain plasticity in chronic pain. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractMaladaptation in sensory neural plasticity of nociceptive pathways is associated with various types of chronic pain through central sensitization and remodeling of brain connectivity. Within this context, extensive research has been conducted to evaluate the mechanisms and efficacy of certain non-pharmacological pain treatment modalities. These include neurostimulation, virtual reality, cognitive therapy and rehabilitation. Here, we summarize the involved mechanisms and review novel findings in relation to nociceptive desensitization and modulation of plasticity for the management of intractable chronic pain and prevention of acute-to-chronic pain transition.
Collapse
|
7
|
Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application. Neural Plast 2021; 2021:5607898. [PMID: 34721569 PMCID: PMC8553441 DOI: 10.1155/2021/5607898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord stimulation (SCS) as an evidence-based interventional treatment has been used and approved for clinical use in a variety of pathological states including peripheral neuropathic pain; however, until now, it has not been used for the treatment of spinal cord injury- (SCI-) induced central neuropathic pain. This paper reviews the underlying mechanisms of SCS-induced analgesia and its clinical application in the management of peripheral and central neuropathic pain. Evidence from recent research publications indicates that nociceptive processing at peripheral and central sensory systems is thought to be modulated by SCS through (i) inhibition of the ascending nociceptive transmission by the release of analgesic neurotransmitters such as GABA and endocannabinoids at the spinal dorsal horn; (ii) facilitation of the descending inhibition by release of noradrenalin, dopamine, and serotonin acting on their receptors in the spinal cord; and (iii) activation of a variety of supraspinal brain areas related to pain perception and emotion. These insights into the mechanisms have resulted in the clinically approved use of SCS in peripheral neuropathic pain states like Complex Regional Pain Syndrome (CRPS) and Failed Back Surgery Syndrome (FBSS). However, the mechanisms underlying SCS-induced pain relief in central neuropathic pain are only partly understood, and more research is needed before this therapy can be implemented in SCI patients with central neuropathic pain.
Collapse
|
8
|
Chakravarthy K, Reddy R, Al-Kaisy A, Yearwood T, Grider J. A Call to Action Toward Optimizing the Electrical Dose Received by Neural Targets in Spinal Cord Stimulation Therapy for Neuropathic Pain. J Pain Res 2021; 14:2767-2776. [PMID: 34522135 PMCID: PMC8434932 DOI: 10.2147/jpr.s323372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Spinal cord stimulation has seen unprecedented growth in new technology in the 50 years since the first subdural implant. As we continue to grow our understanding of spinal cord stimulation and relevant mechanisms of action, novel questions arise as to electrical dosing optimization. Programming adjustment — dose titration — is often a process of trial and error that can be time-consuming and frustrating for both patient and clinician. In this report, we review the current preclinical and clinical knowledge base in order to provide insights that may be helpful in developing more rational approaches to spinal cord stimulation dosing. We also provide key conclusions that may help in directing future research into electrical dosing, given the advent of newer waveforms outside traditional programming parameters.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, Ca, USA
| | - Rajiv Reddy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Adnan Al-Kaisy
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Thomas Yearwood
- Pain Management and Neuromodulation Centre at Guy's and St. Thomas' NHS Trust, London, UK
| | - Jay Grider
- Division of Pain Medicine, Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
9
|
Zhang X, Wang J, Sui A, Zhang N, Lv Q, Liu Z. Antinociceptive Effect of Magnolol in a Neuropathic Pain Model of Mouse. J Pain Res 2021; 14:2083-2093. [PMID: 34267552 PMCID: PMC8275150 DOI: 10.2147/jpr.s317204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain remains a clinical challenge with limited effective treatments. Previous studies have found that magnolol (Mag), an ingredient existing in some herbs, showed neuroprotective effect. However, it remains unclear whether Mag can alleviate neuropathic pain. METHODS Chronic constriction injury (CCI) is used as the neuropathic pain model. Mice were randomly divided into 5 groups: Sham, CCI, CCI + 5, 10, 30 mg/kg Mag groups. Thermal and mechanical paw withdrawal threshold were performed at baseline and on the 3rd, 5th, 7th, 14th days post-surgery. Lumbar spinal cord and blood samples were collected on the 14th day. Blood lipid profile, kidney and liver functions, as well as the activation of microglia were evaluated, along with the related signal pathway examined using multiple methods including immunohistochemistry, RT-PCR and Western blot. RESULTS Mag alleviated thermal and mechanical hypersensitivity in CCI mice. CCI activated microglia and upregulated the expression of P2Y12, while Mag inhibited microglial activation, and downregulated the expression of P2Y12. Mag also blocked the activation of p38 mitogen-activated protein kinase (MAPK) and other pain-related cytokines such as IL-6, TNF-α and IL-1β. CONCLUSION The findings indicate that Mag has antinociceptive effect on neuropathic pain, probably mediated through P2Y12 receptors and p38 MAPK mediated pathways. With its relatively safe profile, Mag may be a potential therapeutic agent for neuropathic pain.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Juntao Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Aihua Sui
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Nannan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Qiulan Lv
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zhenfang Liu
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
10
|
Smith WJ, Cedeño DL, Thomas SM, Kelley CA, Vetri F, Vallejo R. Modulation of microglial activation states by spinal cord stimulation in an animal model of neuropathic pain: Comparing high rate, low rate, and differential target multiplexed programming. Mol Pain 2021; 17:1744806921999013. [PMID: 33626981 PMCID: PMC7925954 DOI: 10.1177/1744806921999013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters. Previous work showed that, in rodents subjected to the spared nerve injury (SNI) model of neuropathic pain, a differential target multiplexed programming (DTMP) approach provided significantly better relief of pain-like behavior compared to high rate (HRP) and low rate programming (LRP). While these studies demonstrated the importance of transcriptomic changes in SCS mechanism of action, they did not specifically address the role of SCS in microglial activation. The data presented herein utilizes microglia-specific activation transcriptomes to further understand how an SNI model of chronic pain and subsequent continuous SCS treatment with either DTMP, HRP, or LRP affects microglial activation. Genes for each activation transcriptome were identified within our dataset and gene expression levels were compared with that of healthy animals, naïve to injury and interventional procedures. Pearson correlations indicated that DTMP yields the highest significant correlations to expression levels found in the healthy animals across all microglial activation transcriptomes. In contrast, HRP or LRP yielded weak or very weak correlations for these transcriptomes. This work demonstrates that chronic pain and subsequent SCS treatments can modulate microglial activation transcriptomes, supporting previous research on microglia in chronic pain. Furthermore, this study provides evidence that DTMP is more effective than HRP and LRP at modulating microglial transcriptomes, offering potential insight into the therapeutic efficacy of DTMP.
Collapse
Affiliation(s)
- William J Smith
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David L Cedeño
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Samuel M Thomas
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, USA
| | - Courtney A Kelley
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | | | - Ricardo Vallejo
- Research and Development, Lumbrera LLC, Bloomington, IL, USA.,Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.,National Spine and Pain Centers, Bloomington, IL, USA
| |
Collapse
|
11
|
Afshari K, Momeni Roudsari N, Lashgari NA, Haddadi NS, Haj-Mirzaian A, Hassan Nejad M, Shafaroodi H, Ghasemi M, Dehpour AR, Abdolghaffari AH. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol 2020; 35:277-304. [PMID: 33464681 DOI: 10.1111/fcp.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/06/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Accumulating evidence indicates that a considerable number of antibiotics exert anti-inflammatory and neuroprotective effects in different central and peripheral nervous system diseases including spinal cord injury (SCI). Both clinical and preclinical studies on SCI have found therapeutic effects of antibiotics from different families on SCI. These include macrolides, minocycline, β-lactams, and dapsone, all of which have been found to improve SCI sequels and complications. These antibiotics may target similar signaling pathways such as reducing inflammatory microglial activity, promoting autophagy, inhibiting neuronal apoptosis, and modulating the SCI-related mitochondrial dysfunction. In this review paper, we will discuss the mechanisms underlying therapeutic effects of these antibiotics on SCI, which not only could supply vital information for investigators but also guide clinicians to consider administering these antibiotics as part of a multimodal therapeutic approach for management of SCI and its complications.
Collapse
Affiliation(s)
- Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran
| | - Nazgol-Sadat Haddadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.,Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Malihe Hassan Nejad
- Department of Infectious Diseases, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, P. O. Box: 19419-33111, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 31375-1369, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| |
Collapse
|