1
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
King BMN, Mintz S, Lin X, Morley GE, Schlamp F, Khodadadi-Jamayran A, Fishman GI. Chronic Kidney Disease Induces Proarrhythmic Remodeling. Circ Arrhythm Electrophysiol 2023; 16:e011466. [PMID: 36595632 PMCID: PMC9852080 DOI: 10.1161/circep.122.011466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) are at increased risk of developing cardiac arrhythmogenesis and sudden cardiac death; however, the basis for this association is incompletely known. METHODS Here, using murine models of CKD, we examined interactions between kidney disease progression and structural, electrophysiological, and molecular cardiac remodeling. RESULTS C57BL/6 mice with adenine supplemented in their diet developed progressive CKD. Electrocardiographically, CKD mice developed significant QT prolongation and episodes of bradycardia. Optical mapping of isolated-perfused hearts using voltage-sensitive dyes revealed significant prolongation of action potential duration with no change in epicardial conduction velocity. Patch-clamp studies of isolated ventricular cardiomyocytes revealed changes in sodium and potassium currents consistent with action potential duration prolongation. Global transcriptional profiling identified dysregulated expression of cellular stress response proteins RBM3 (RNA-binding motif protein 3) and CIRP (cold-inducible RNA-binding protein) that may underlay the ion channel remodeling. Unexpectedly, we found that female sex is a protective factor in the progression of CKD and its cardiac sequelae. CONCLUSIONS Our data provide novel insights into the association between CKD and pathologic proarrhythmic cardiac remodeling. Cardiac cellular stress response pathways represent potential targets for pharmacologic intervention for CKD-induced heart rhythm disorders.
Collapse
Affiliation(s)
- Benjamin M N King
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Shana Mintz
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Gregory E Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Florencia Schlamp
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | | | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| |
Collapse
|
3
|
Abudahab S, Price ET, Dozmorov MG, Deshpande LS, McClay JL. The Aryl Hydrocarbon Receptor, Epigenetics and the Aging Process. J Nutr Health Aging 2023; 27:291-300. [PMID: 37170437 PMCID: PMC10947811 DOI: 10.1007/s12603-023-1908-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, classically associated with the regulation of xenobiotic metabolism in response to environmental toxins. In recent years, transgenic rodent models have implicated AhR in aging and longevity. Moreover, several AhR ligands, such as resveratrol and quercetin, are compounds proven to extend the lifespan of model organisms. In this paper, we first review AhR biology with a focus on aging and highlight several AhR ligands with potential anti-aging properties. We outline how AhR-driven expression of xenobiotic metabolism genes into old age may be a key mechanism through which moderate induction of AhR elicits positive benefits on longevity and healthspan. Furthermore, via integration of publicly available datasets, we show that liver-specific AhR target genes are enriched among genes subject to epigenetic aging. Changes to epigenetic states can profoundly affect transcription factor binding and are a hallmark of the aging process. We suggest that the interplay between AhR and epigenetic aging should be the subject of future research and outline several key gaps in the current literature. Finally, we recommend that a broad range of non-toxic AhR ligands should be investigated for their potential to promote healthspan and longevity.
Collapse
Affiliation(s)
- S Abudahab
- Sara Abudahab, Smith Building, 410 North 12th Street, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0533, USA.
| | | | | | | | | |
Collapse
|
4
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
6
|
Falconi CA, Junho CVDC, Fogaça-Ruiz F, Vernier ICS, da Cunha RS, Stinghen AEM, Carneiro-Ramos MS. Uremic Toxins: An Alarming Danger Concerning the Cardiovascular System. Front Physiol 2021; 12:686249. [PMID: 34054588 PMCID: PMC8160254 DOI: 10.3389/fphys.2021.686249] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The kidneys and heart share functions with the common goal of maintaining homeostasis. When kidney injury occurs, many compounds, the so-called "uremic retention solutes" or "uremic toxins," accumulate in the circulation targeting other tissues. The accumulation of uremic toxins such as p-cresyl sulfate, indoxyl sulfate and inorganic phosphate leads to a loss of a substantial number of body functions. Although the concept of uremic toxins is dated to the 1960s, the molecular mechanisms capable of leading to renal and cardiovascular injuries are not yet known. Besides, the greatest toxic effects appear to be induced by compounds that are difficult to remove by dialysis. Considering the close relationship between renal and cardiovascular functions, an understanding of the mechanisms involved in the production, clearance and overall impact of uremic toxins is extremely relevant for the understanding of pathologies of the cardiovascular system. Thus, the present study has as main focus to present an extensive review on the impact of uremic toxins in the cardiovascular system, bringing the state of the art on the subject as well as clinical implications related to patient's therapy affected by chronic kidney disease, which represents high mortality of patients with cardiac comorbidities.
Collapse
Affiliation(s)
- Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André, Brazil
| | - Carolina Victoria da Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André, Brazil
| | - Fernanda Fogaça-Ruiz
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André, Brazil
| | - Imara Caridad Stable Vernier
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André, Brazil
| |
Collapse
|
7
|
Girer NG, Tomlinson CR, Elferink CJ. The Aryl Hydrocarbon Receptor in Energy Balance: The Road from Dioxin-Induced Wasting Syndrome to Combating Obesity with Ahr Ligands. Int J Mol Sci 2020; 22:E49. [PMID: 33374508 PMCID: PMC7793057 DOI: 10.3390/ijms22010049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) has been studied for over 40 years, yet our understanding of this ligand-activated transcription factor remains incomplete. Each year, novel findings continually force us to rethink the role of the AHR in mammalian biology. The AHR has historically been studied within the context of potent activation via AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with a focus on how the AHR mediates TCDD toxicity. Research has subsequently revealed that the AHR is actively involved in distinct physiological processes ranging from the development of the liver and reproductive organs, to immune system function and wound healing. More recently, the AHR was implicated in the regulation of energy metabolism and is currently being investigated as a potential therapeutic target for obesity. In this review, we re-trace the steps through which the early toxicological studies of TCDD led to the conceptual framework for the AHR as a potential therapeutic target in metabolic disease. We additionally discuss the key discoveries that have been made concerning the role of the AHR in energy metabolism, as well as the current and future directions of the field.
Collapse
Affiliation(s)
- Nathaniel G. Girer
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| | - Craig R. Tomlinson
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Dartmouth College, Lebanon, NH 03756, USA;
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX 77550, USA;
| |
Collapse
|
8
|
Germ-Free Conditions Modulate Host Purine Metabolism, Exacerbating Adenine-Induced Kidney Damage. Toxins (Basel) 2020; 12:toxins12090547. [PMID: 32859011 PMCID: PMC7551802 DOI: 10.3390/toxins12090547] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microbiota are known to affect kidney disease conditions. We have previously shown that germ-free conditions exacerbated adenine-induced kidney damage in mice; however, the mechanism by which this occurs has not been elucidated. To explore this mechanism, we examined the influence of germ-free conditions on purine metabolism and renal immune responses involved in the kidney damage. Germ-free mice showed higher expression levels of purine-metabolizing enzymes such as xanthine dehydrogenase, which converts adenine to a nephrotoxic byproduct 2,8-dihydroxyadenine (2,8-DHA). The germ-free mice also showed increased urinary excretion of allantoin, indicating enhanced purine metabolism. Metabolome analysis demonstrated marked differences in the purine metabolite levels in the feces of germ-free mice and mice with microbiota. Furthermore, unlike the germ-free condition, antibiotic treatment did not increase the expression of purine-metabolizing enzymes or exacerbate adenine-induced kidney damage. Considering renal immune responses, the germ-free mice displayed an absence of renal IL-17A expression. However, the adenine-induced kidney damage in wild-type mice was comparable to that in IL-17A-deficient mice, suggesting that IL-17A does not play a major role in the disease condition. Our results suggest that the enhanced host purine metabolism in the germ-free mice potentially promotes the conversion of the administered adenine into 2,8-DHA, resulting in exacerbated kidney damage. This further suggests a role of the microbiota in regulating host purine metabolism.
Collapse
|