1
|
Atallah OO, Yassin SM, Verchot J. New Insights into Hop Latent Viroid Detection, Infectivity, Host Range, and Transmission. Viruses 2023; 16:30. [PMID: 38257731 PMCID: PMC10819085 DOI: 10.3390/v16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Hop latent viroid (HLVd), a subviral pathogen from the family Pospiviroidae, is a major threat to the global cannabis industry and is the causative agent for "dudding disease". Infected plants can often be asymptomatic for a period of growth and then develop symptoms such as malformed and yellowing leaves, as well as stunted growth. During flowering, HLVd-infected plants show reduced levels of valuable metabolites. This study was undertaken to expand our basic knowledge of HLVd infectivity, transmission, and host range. HLVd-specific primers were used for RT-PCR detection in plant samples and were able to detect HLVd in as little as 5 picograms of total RNA. A survey of hemp samples obtained from a diseased production system proved sole infection of HLVd (72%) with no coexistence of hop stunt viroid. HLVd was infectious through successive passage assays using a crude sap or total RNA extract derived from infected hemp. HLVd was also highly transmissible through hemp seeds at rates of 58 to 80%. Host range assays revealed new hosts for HLVd: tomato, cucumber, chrysanthemum, Nicotiana benthamiana, and Arabidopsis thaliana (Col-0). Sequence analysis of 77 isolates revealed only 3 parsimony-informative sites, while 10 sites were detected among all HLVd isolates available in the GenBank. The phylogenetic relationship among HLVd isolates allowed for inferring two major clades based on the genetic distance. Our findings facilitate further studies on host-viroid interaction and viroid management.
Collapse
Affiliation(s)
| | | | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; (O.O.A.); (S.M.Y.)
| |
Collapse
|
2
|
Kochetov AV, Pronozin AY, Shatskaya NV, Afonnikov DA, Afanasenko OS. Potato spindle tuber viroid. Vavilovskii Zhurnal Genet Selektsii 2021; 25:269-275. [PMID: 34901723 PMCID: PMC8628614 DOI: 10.18699/vj21.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Viroids belong to a very interesting class of molecules attracting researchers in phytopathology and
molecular evolution. Here we review recent literature data concerning the genetics of Potato spindle tuber viroid
(PSTVd) and the mechanisms related to its pathological effect on the host plants. PSTVd can be transmitted vertically through microspores and macrospores, but not with pollen from another infected plant. The 359 nucleotidelong genomic RNA of PSTVd is highly structured and its 3D-conformation is responsible for interaction with host
cellular factors to mediate replication, transport between tissues during systemic infection and the severity of
pathological symptoms. RNA replication is prone to errors and infected plants contain a population of mutated
forms of the PSTVd genome. Interestingly, at 7 DAI, only 25 % of the newly synthesized RNAs were identical to
the master copy, but this proportion increased to up to 70 % at 14 DAI and remained the same afterwards. PSTVd
infection induces the immune response in host plants. There are PSTVd strains with a severe, a moderate or a mild
pathological effect. Interestingly, viroid replication itself does not necessarily induce strong morphological or
physiological symptoms. In the case of PSTVd, disease symptoms may occur due to RNA-interference, which decreases the expression levels of some important cellular regulatory factors, such as, for example, potato StTCP23
from the gibberellic acid pathway with a role in tuber morphogenesis or tomato FRIGIDA-like protein 3 with an
early flowering phenotype. This association between the small segments of viroid genomic RNAs complementary
to the untranslated regions of cellular mRNAs and disease symptoms provides a way for new resistant cultivars to
be developed by genetic editing. To conclude, viroids provide a unique model to reveal the fundamental features
of living systems, which appeared early in evolution and still remain undiscovered.
Collapse
Affiliation(s)
- A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A Y Pronozin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Shatskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O S Afanasenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
3
|
Hadjieva N, Apostolova E, Baev V, Yahubyan G, Gozmanova M. Transcriptome Analysis Reveals Dynamic Cultivar-Dependent Patterns of Gene Expression in Potato Spindle Tuber Viroid-Infected Pepper. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122687. [PMID: 34961158 PMCID: PMC8706270 DOI: 10.3390/plants10122687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Potato spindle tuber viroid (PSTVd) infects various plants. PSTVd pathogenesis is associated with interference with the cellular metabolism and defense signaling pathways via direct interaction with host factors or via the transcriptional or post-transcriptional modulation of gene expression. To better understand host defense mechanisms to PSTVd infection, we analyzed the gene expression in two pepper cultivars, Capsicum annuum Kurtovska kapia (KK) and Djulunska shipka (DS), which exhibit mild symptoms of PSTVd infection. Deep sequencing-based transcriptome analysis revealed differential gene expression upon infection, with some genes displaying contrasting expression patterns in KK and DS plants. More genes were downregulated in DS plants upon infection than in KK plants, which could underlie the more severe symptoms seen in DS plants. Gene ontology enrichment analysis revealed that most of the downregulated differentially expressed genes in both cultivars were enriched in the gene ontology term photosynthesis. The genes upregulated in DS plants fell in the biological process of gene ontology term defense response. We validated the expression of six overlapping differentially expressed genes that are involved in photosynthesis, plant hormone signaling, and defense pathways by quantitative polymerase chain reaction. The observed differences in the responses of the two cultivars to PSTVd infection expand the understanding of the fine-tuning of plant gene expression that is needed to overcome the infection.
Collapse
|
4
|
Patzak J, Henychová A, Krofta K, Svoboda P, Malířová I. The Influence of Hop Latent Viroid (HLVd) Infection on Gene Expression and Secondary Metabolite Contents in Hop ( Humulus lupulus L.) Glandular Trichomes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112297. [PMID: 34834660 PMCID: PMC8617911 DOI: 10.3390/plants10112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
Collapse
|
5
|
Nath VS, Mishra AK, Awasthi P, Shrestha A, Matoušek J, Jakse J, Kocábek T, Khan A. Identification and characterization of long non-coding RNA and their response against citrus bark cracking viroid infection in Humulus lupulus. Genomics 2021; 113:2350-2364. [PMID: 34051324 DOI: 10.1016/j.ygeno.2021.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a highly heterogeneous class of non-protein-encoding transcripts that play an essential regulatory role in diverse biological processes, including stress responses. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) poses a major threat to the production of Humulus lupulus (hop) plants. In this study, we systematically investigate the characteristics of the lncRNAs in hop and their role in CBCVd-infection using RNA-sequencing data. Following a stringent filtration criterion, a total of 3598 putative lncRNAs were identified with a high degree of certainty, of which 19% (684) of the lncRNAs were significantly differentially expressed (DE) in CBCVd-infected hop, which were predicted to be mainly involved in plant-pathogen interactions, kinase cascades, secondary metabolism and phytohormone signal transduction. Besides, several lncRNAs and CBCVd-responsive lncRNAs were identified as the precursor of microRNAs and predicted as endogenous target mimics (eTMs) for hop microRNAs involved in CBCVd-infection.
Collapse
Affiliation(s)
- Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ahamed Khan
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
7
|
Zhang H, Zheng D, Yin L, Song F, Jiang M. Functional Analysis of OsMED16 and OsMED25 in Response to Biotic and Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:652453. [PMID: 33868352 PMCID: PMC8044553 DOI: 10.3389/fpls.2021.652453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/19/2023]
Abstract
Mediator complex is a multiprotein complex that regulates RNA polymerase II-mediated transcription. Moreover, it functions in several signaling pathways, including those involved in response to biotic and abiotic stresses. We used virus-induced gene silencing (VIGS) to study the functions of two genes, namely OsMED16 and OsMED25 in response to biotic and abiotic stresses in rice. Both genes were differentially induced by Magnaporthe grisea (M. grisea), the causative agent of blast disease, hormone treatment, and abiotic stress. We found that both BMV: OsMED16- and BMV: OsMED25-infiltrated seedlings reduced the resistance to M. grisea by regulating the accumulation of H2O2 and expression of defense-related genes. Furthermore, BMV: OsMED16-infiltrated seedlings decreased the tolerance to cold by increasing the malondialdehyde (MDA) content and reducing the expression of cold-responsive genes.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Life Science, Taizhou University, Taizhou, China
| | - Dewei Zheng
- College of Life Science, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- College of Life Science, Taizhou University, Taizhou, China
- *Correspondence: Ming Jiang,
| |
Collapse
|
8
|
Shrestha A, Mishra AK, Matoušek J, Steinbachová L, Potěšil D, Nath VS, Awasthi P, Kocábek T, Jakse J, Drábková LZ, Zdráhal Z, Honys D, Steger G. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int J Mol Sci 2020; 21:E8700. [PMID: 33218043 PMCID: PMC7698868 DOI: 10.3390/ijms21228700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Collapse
Affiliation(s)
- Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany;
| |
Collapse
|