1
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
2
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Li Z, Zhang C, Zhang X, Sui J, Jin L, Lin L, Fu Q, Lin H, Song J. NIR-II Functional Materials for Photoacoustic Theranostics. Bioconjug Chem 2022; 33:67-86. [PMID: 34995076 DOI: 10.1021/acs.bioconjchem.1c00520] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photoacoustic imaging (PAI) has attracted great attention in the diagnosis and treatment of diseases due to its noninvasive properties. Especially in the second near-infrared (NIR-II) window, PAI can effectively avoid the interference of tissue spontaneous fluorescence and light scattering, and obtain high resolution images with deeper penetration depth. Because of its ideal spectral absorption and high conversion efficiency, NIR-II PA contrast agents overcome the absorption or emission of NIR-II light by endogenous biomolecules. In recent years, a series of NIR-II PA contrast agents have been developed to improve the performance of PAI in disease diagnosis and treatment. In this paper, the research progress of NIR-II PA contrast agents and their applications in biomedicine are reviewed. PA contrast agents are classified according to their composition, including inorganic contrast agents, organic contrast agents, and hybrid organic-inorganic contrast agents. The applications of NIR-II PA contrast agents in medical imaging are described, such as cancer imaging, inflammation detection, brain disease imaging, blood related disease imaging, and other biomedical application. Finally, the research prospects and breakthrough of NIR-II PA contrast agents are discussed.
Collapse
Affiliation(s)
- Zhifang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Cheng Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jian Sui
- Shengli Clinical Medical College, Fujian Medical University, Department of Pathology, Fujian Provincial Hospital, Fuzhou 350001, P. R. China
| | - Long Jin
- Shengli Clinical Medical College, Fujian Medical University, Department of Pathology, Fujian Provincial Hospital, Fuzhou 350001, P. R. China
| | - Lisheng Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongxin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
4
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Chen J, Sedgwick AC, Sen S, Ren Y, Sun Q, Chau C, Arambula JF, Sarma T, Song L, Sessler JL, Liu C. Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chem Sci 2021; 12:9916-9921. [PMID: 34377389 PMCID: PMC8317656 DOI: 10.1039/d1sc01591e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.
Collapse
Affiliation(s)
- Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Sajal Sen
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Qinchao Sun
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Calvin Chau
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jonathan F. Arambula
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Tridib Sarma
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
6
|
Advances in the Chemistry of Porphyrins and Related Macrocycles. Int J Mol Sci 2021; 22:ijms22147487. [PMID: 34299107 PMCID: PMC8307316 DOI: 10.3390/ijms22147487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Porphyrins and their analogues feature remarkably in nature, being prosthetic groups in a wide variety of primary metabolites playing a pivotal role in many biological processes [...].
Collapse
|
7
|
Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021; 26:2823. [PMID: 34068708 PMCID: PMC8126243 DOI: 10.3390/molecules26092823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalocyanines have enjoyed throughout the years the benefits of being exquisite compounds with many favorable properties arising from the straightforward and diverse possibilities of their structural modulation. Last decades appreciated a steady growth in applications for phthalocyanines, particularly those dependent on their great photophysical properties, now used in several cutting-edge technologies, particularly in photonic applications. Judging by the vivid reports currently provided by many researchers around the world, the spotlight remains assured. This review deals with the use of phthalocyanine molecules in innovative materials in photo-applications. Beyond a comprehensive view on the recent discoveries, a critical review of the most acclaimed/considered reports is the driving force, providing a brief and direct insight on the latest milestones in phthalocyanine photonic-based science.
Collapse
Affiliation(s)
- Andrea M. Schmidt
- LifeEstetika, Laser Solutions, Universitätstadt Tübingen, Maria-von-Linden Strasse, 72076 Tübingen, Germany;
| | - Mário J. F. Calvete
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
8
|
Gjuroski I, Furrer J, Vermathen M. Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques. Molecules 2021; 26:1942. [PMID: 33808335 PMCID: PMC8037866 DOI: 10.3390/molecules26071942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin-macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.
Collapse
Affiliation(s)
| | | | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (I.G.); (J.F.)
| |
Collapse
|
9
|
Li S, Lui KH, Li X, Fang X, Lo WS, Gu YJ, Wong WT. pH-Triggered Poly(ethylene glycol)–Poly(lactic acid/glycolic acid)/Croconaine Nanoparticles-Assisted Multiplexed Photoacoustic Imaging and Enhanced Photothermal Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4152-4164. [DOI: 10.1021/acsabm.0c01578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xueyang Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yan-Juan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
10
|
Yamasumi K, Notsuka Y, Yamaoka Y, Mori S, Ishida M, Furuta H. Synthesis of Helically π‐Extended N‐Confused Porphyrin Dimer via
meso
‐Bipyrrole‐Bridge with Near‐Infrared‐II Absorption Capability. Chemistry 2020; 26:13590-13594. [DOI: 10.1002/chem.202002406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
11
|
Korupalli C, Kalluru P, Nuthalapati K, Kuthala N, Thangudu S, Vankayala R. Recent Advances of Polyaniline-Based Biomaterials for Phototherapeutic Treatments of Tumors and Bacterial Infections. Bioengineering (Basel) 2020; 7:E94. [PMID: 32823566 PMCID: PMC7552745 DOI: 10.3390/bioengineering7030094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Conventional treatments fail to completely eradicate tumor or bacterial infections due to their inherent shortcomings. In recent years, photothermal therapy (PTT) has emerged as an attractive treatment modality that relies on the absorption of photothermal agents (PTAs) at a specific wavelength, thereby transforming the excitation light energy into heat. The advantages of PTT are its high efficacy, specificity, and minimal damage to normal tissues. To this end, various inorganic nanomaterials such as gold nanostructures, carbon nanostructures, and transition metal dichalcogenides have been extensively explored for PTT applications. Subsequently, the focus has shifted to the development of polymeric PTAs, owing to their unique properties such as biodegradability, biocompatibility, non-immunogenicity, and low toxicity when compared to inorganic PTAs. Among various organic PTAs, polyaniline (PANI) is one of the best-known and earliest-reported organic PTAs. Hence, in this review, we cover the recent advances and progress of PANI-based biomaterials for PTT application in tumors and bacterial infections. The future prospects in this exciting area are also addressed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada;
| | - Karthik Nuthalapati
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Naresh Kuthala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; (K.N.); (N.K.); (S.T.)
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
12
|
Lavaud L, Azarias C, Canard G, Pascal S, Jacquemin D, Siri O. MixedN-aryl/alkyl substitution favours an unusual tautomer of near-infrared absorbing azacalixphyrins. NEW J CHEM 2020. [DOI: 10.1039/d0nj04587j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This work depicts the synthesis of a new azacalixphyrin presenting both aryl and alkyl substituents. The joint experimental and theoretical study supports that the substitution pattern favour an unusual 5–7 tautomer.
Collapse
Affiliation(s)
- Lucien Lavaud
- Aix Marseille Univ
- CNRS UMR 7325
- CINAM
- 13288 Marseille Cedex 09
- France
| | - Cloé Azarias
- Université de Nantes
- CNRS
- CEISAM UMR 6230
- 44322 Nantes
- France
| | - Gabriel Canard
- Aix Marseille Univ
- CNRS UMR 7325
- CINAM
- 13288 Marseille Cedex 09
- France
| | - Simon Pascal
- Aix Marseille Univ
- CNRS UMR 7325
- CINAM
- 13288 Marseille Cedex 09
- France
| | | | - Olivier Siri
- Aix Marseille Univ
- CNRS UMR 7325
- CINAM
- 13288 Marseille Cedex 09
- France
| |
Collapse
|