1
|
Liu Y, Suryatenggara J, Wong H, Jayasinghe M, Tang J, Tan H, Kwon J, Zhou Q, Ummarino S, Ebralidze A, Le M, Doench J, Chai L, Benoukraf T, Hiwase D, Thomas D, Di Ruscio A, Tenen D, Bassal M. Methylation Mesa define functional regulatory elements for targeted gene activation. RESEARCH SQUARE 2024:rs.3.rs-4359582. [PMID: 39483908 PMCID: PMC11527235 DOI: 10.21203/rs.3.rs-4359582/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA methylation and mRNA expression correlations are often presented with inconsistent evidence supporting causal regulation. We hypothesized that causal regulatory methylation elements would exhibit heightened demethylation sensitivity. To investigate, we analyzed 20 whole-genomic bisulfite sequenced samples before and after demethylation and identified narrow-width (45-294 bp) elements within a short plateau, termed Methylation Mesa (MM). The Mesa signature was conserved across species and was independent of CpG islands. Mesa also demonstrate high concordance with primed and active histone marks. To assess causality, we developed CRISPR-DiR, a highly precise targeted demethylation technology. Targeted demethylation of a Mesa triggers locus and distal chromatin rewiring events that initiate mRNA expression significantly greater than promoter-CpG island targeting. Thus, Mesa are self-sustaining epigenetic regulatory elements that maintain long-term gene activation through focused demethylation only within the Mesa core, resulting in subsequent histone modifications and chromatin rewiring events that interact with distal elements also marked as Mesas.
Collapse
Affiliation(s)
- Y.V. Liu
- Cancer Science Institute of Singapore, 117599, Singapore
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | | | - H. Wong
- Cancer Science Institute of Singapore, 117599, Singapore
| | - M.K. Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - J.P. Tang
- Cancer Science Institute of Singapore, 117599, Singapore
| | - H.K. Tan
- Cancer Science Institute of Singapore, 117599, Singapore
| | - J. Kwon
- Cancer Science Institute of Singapore, 117599, Singapore
| | - Q. Zhou
- Cancer Science Institute of Singapore, 117599, Singapore
| | - S. Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - A.K. Ebralidze
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - M.T.N. Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - J.G. Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - L. Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - T. Benoukraf
- Cancer Science Institute of Singapore, 117599, Singapore
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, A1B 3V6, Canada
| | - D. Hiwase
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - D. Thomas
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - A. Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, 28100, Italy
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215
| | - D.G. Tenen
- Cancer Science Institute of Singapore, 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - M.A. Bassal
- Cancer Science Institute of Singapore, 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
2
|
Achudhan AB, Kannan P, Gupta A, Saleena LM. A Review of Web-Based Metagenomics Platforms for Analysing Next-Generation Sequence Data. Biochem Genet 2024; 62:621-632. [PMID: 37507643 DOI: 10.1007/s10528-023-10467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Metagenomics has now evolved as a promising technology for understanding the microbial population in the environment. By metagenomics, a number of extreme and complex environment has been explored for their microbial population. Using this technology, researchers have brought out novel genes and their potential characteristics, which have robust applications in food, pharmaceutical, scientific research, and other biotechnological fields. A sequencing platform can provide a sequence of microbial populations in any given environment. The sequence needs to be analysed computationally to derive meaningful information. It is presumed that only bioinformaticians with extensive computational skills can process the sequencing data till the downstream end. However, numerous open-source software and online servers are available to analyse the metagenomic data developed for a biologist with less computational skills. This review is focused on bioinformatics tools such as Galaxy, CSI-NGS portal, ANASTASIA and SHAMAN, EBI- metagenomics, IDseq, and MG-RAST for analysing metagenomic data.
Collapse
Affiliation(s)
- Arunmozhi Bharathi Achudhan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Priya Kannan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Annapurna Gupta
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
3
|
Qu Y, Lim JJY, An O, Yang H, Toh YC, Chua JJE. FEZ1 participates in human embryonic brain development by modulating neuronal progenitor subpopulation specification and migrations. iScience 2023; 26:108497. [PMID: 38213789 PMCID: PMC10783620 DOI: 10.1016/j.isci.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Mutations in the human fasciculation and elongation protein zeta 1 (FEZ1) gene are found in schizophrenia and Jacobsen syndrome patients. Here, using human cerebral organoids (hCOs), we show that FEZ1 expression is turned on early during brain development and is detectable in both neuroprogenitor subtypes and immature neurons. FEZ1 deletion disrupts expression of neuronal and synaptic development genes. Using single-cell RNA sequencing, we detected abnormal expansion of homeodomain-only protein homeobox (HOPX)- outer radial glia (oRG), concurrent with a reduction of HOPX+ oRG, in FEZ1-null hCOs. HOPX- oRGs show higher cell mobility as compared to HOPX+ oRGs. Ectopic localization of neuroprogenitors to the outer layer is seen in FEZ1-null hCOs. Anomalous encroachment of TBR2+ intermediate progenitors into CTIP2+ deep layer neurons further indicated abnormalities in cortical layer formation these hCOs. Collectively, our findings highlight the involvement of FEZ1 in early cortical brain development and how it contributes to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yinghua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jonathan Jun-Yong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
- Institute for Molecular and Cell Biology, A∗STAR, Singapore 138473, Singapore
| |
Collapse
|
4
|
Liew LC, Poh BM, An O, Ho BX, Lim CYY, Pang JKS, Beh LY, Yang HH, Soh BS. JAK2 as a surface marker for enrichment of human pluripotent stem cells-derived ventricular cardiomyocytes. Stem Cell Res Ther 2023; 14:367. [PMID: 38093391 PMCID: PMC10720068 DOI: 10.1186/s13287-023-03610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Boon Min Poh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Beatrice Xuan Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Christina Ying Yan Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Leslie Y Beh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
5
|
Oei V, Chuang LSH, Matsuo J, Srivastava S, Teh M, Ito Y. RUNX3 inactivates oncogenic MYC through disruption of MYC/MAX complex and subsequent recruitment of GSK3β-FBXW7 cascade. Commun Biol 2023; 6:689. [PMID: 37400551 DOI: 10.1038/s42003-023-05037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3β-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3β-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.
Collapse
Affiliation(s)
- Vincent Oei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Graduate School, Integrative Sciences and Engineering Programme, Singapore, Singapore
| | - Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Licata L, Via A, Turina P, Babbi G, Benevenuta S, Carta C, Casadio R, Cicconardi A, Facchiano A, Fariselli P, Giordano D, Isidori F, Marabotti A, Martelli PL, Pascarella S, Pinelli M, Pippucci T, Russo R, Savojardo C, Scafuri B, Valeriani L, Capriotti E. Resources and tools for rare disease variant interpretation. Front Mol Biosci 2023; 10:1169109. [PMID: 37234922 PMCID: PMC10206239 DOI: 10.3389/fmolb.2023.1169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.
Collapse
Affiliation(s)
- Luana Licata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Allegra Via
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Claudio Carta
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Cicconardi
- Department of Physics, University of Genova, Genova, Italy
- Italiano di Tecnologia—IIT, Genova, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Deborah Giordano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Federica Isidori
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | | | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Buratin A, Bortoluzzi S, Gaffo E. Systematic benchmarking of statistical methods to assess differential expression of circular RNAs. Brief Bioinform 2023; 24:6966517. [PMID: 36592056 PMCID: PMC9851295 DOI: 10.1093/bib/bbac612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 01/03/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed transcripts involved in critical regulatory axes, cancer pathways and disease mechanisms. CircRNA expression measured with RNA-seq has particular characteristics that might hamper the performance of standard biostatistical differential expression assessment methods (DEMs). We compared 38 DEM pipelines configured to fit circRNA expression data's statistical properties, including bulk RNA-seq, single-cell RNA-seq (scRNA-seq) and metagenomics DEMs. The DEMs performed poorly on data sets of typical size. Widely used DEMs, such as DESeq2, edgeR and Limma-Voom, gave scarce results, unreliable predictions or even contravened the expected behaviour with some parameter configurations. Limma-Voom achieved the most consistent performance throughout different benchmark data sets and, as well as SAMseq, reasonably balanced false discovery rate (FDR) and recall rate. Interestingly, a few scRNA-seq DEMs obtained results comparable with the best-performing bulk RNA-seq tools. Almost all DEMs' performance improved when increasing the number of replicates. CircRNA expression studies require careful design, choice of DEM and DEM configuration. This analysis can guide scientists in selecting the appropriate tools to investigate circRNA differential expression with RNA-seq experiments.
Collapse
Affiliation(s)
- Alessia Buratin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Gaffo
- Corresponding author: Enrico Gaffo, Department of Molecular Medicine, University of Padova - Via G. Colombo, 3—35131 Padova, Italy. Phone +39 049 827 6502; Fax +39 049 827 6209; E-mail:
| |
Collapse
|
9
|
Paracrine Senescence of Mesenchymal Stromal Cells Involves Inflammatory Cytokines and the NF-κB Pathway. Cells 2022; 11:cells11203324. [PMID: 36291189 PMCID: PMC9600401 DOI: 10.3390/cells11203324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022] Open
Abstract
It has been known that senescence-associated secretory phenotype (SASP) triggers senescence of the surrounding normal cells. However, SASP signaling regarding mesenchymal stromal cell aging remains to be fully elucidated. Therefore, the present study aimed to clarify the molecular mechanism of late (passage) MSC-induced paracrine SASP-mediated senescence of early (passage) MSCs during ex vivo expansion. Here, we conducted an extensive characterization of senescence features in bone-marrow (BM)-derived MSCs from healthy human donors. Late MSCs displayed an enlarged senescent-like morphology, induced SASP-related proinflammatory cytokines (IL-1α and IL-8), and reduced clonogenic capacity and osteogenic differentiation when compared to early MSCs. Of note, paracrine effects of SASP-related IL-1α and IL-8 from late MSCs induced cellular senescence of early MSCs via an NF-κB-dependent manner. Moreover, cellular senescence of early MSCs was promoted by the synergistic action of IL-1α and IL-8. However, inhibition of NF-κB by shRNA transfection or using inhibitors in early MSCs blocked early MSCs cellular senescence caused by paracrine SASP of late MSCs. In conclusion, these findings reveal that late MSCs display features of senescence and that, during ex vivo expansion, SASP-related proinflammatory cytokines contribute to activate a cellular senescence program in early MSCs that may ultimately impair their functionality.
Collapse
|
10
|
Han J, An O, Ren X, Song Y, Tang SJ, Shen H, Ke X, Ng VHE, Tay DJT, Tan HQ, Kappei D, Yang H, Chen L. Multilayered control of splicing regulatory networks by DAP3 leads to widespread alternative splicing changes in cancer. Nat Commun 2022; 13:1793. [PMID: 35379802 PMCID: PMC8980049 DOI: 10.1038/s41467-022-29400-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
The dynamic regulation of alternative splicing requires coordinated participation of multiple RNA binding proteins (RBPs). Aberrant splicing caused by dysregulation of splicing regulatory RBPs is implicated in numerous cancers. Here, we reveal a frequently overexpressed cancer-associated protein, DAP3, as a splicing regulatory RBP in cancer. Mechanistically, DAP3 coordinates splicing regulatory networks, not only via mediating the formation of ribonucleoprotein complexes to induce substrate-specific splicing changes, but also via modulating splicing of numerous splicing factors to cause indirect effect on splicing. A pan-cancer analysis of alternative splicing across 33 TCGA cancer types identified DAP3-modulated mis-splicing events in multiple cancers, and some of which predict poor prognosis. Functional investigation of non-productive splicing of WSB1 provides evidence for establishing a causal relationship between DAP3-modulated mis-splicing and tumorigenesis. Together, our work provides critical mechanistic insights into the splicing regulatory roles of DAP3 in cancer development. RNA binding proteins (RBPs) can participate in regulatory networks to control alternative splicing. Here the authors show that DAP3 functions as an RBP splicing modulator via two mechanisms, and that its overexpression leads to mis-splicing events in cancers.
Collapse
|
11
|
See YX, Chen K, Fullwood MJ. MYC overexpression leads to increased chromatin interactions at superenhancers and MYC binding sites. Genome Res 2022; 32:629-642. [PMID: 35115371 PMCID: PMC8997345 DOI: 10.1101/gr.276313.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
The MYC oncogene encodes for the MYC protein and is frequently dysregulated across multiple cancer cell types, making it an attractive target for cancer therapy. MYC overexpression leads to MYC binding at active enhancers, resulting in a global transcriptional amplification of active genes. Because super-enhancers are frequently dysregulated in cancer, we hypothesized that MYC preferentially invades into super-enhancers and alters the cancer genome organization. To that end, we performed ChIP-seq, RNA-seq, circular chromosome conformation capture (4C-seq), and Spike-in Quantitative Hi-C (SIQHiC) on the U2OS osteosarcoma cell line with tetracycline-inducible MYC. MYC overexpression in U2OS cells modulated histone acetylation and increased MYC binding at super-enhancers. SIQHiC analysis revealed increased global chromatin contact frequency, particularly at chromatin interactions connecting MYC binding sites at promoters and enhancers. Immunofluorescence staining showed that MYC molecules formed punctate foci at these transcriptionally active domains after MYC overexpression. These results demonstrate the accumulation of overexpressed MYC at promoter–enhancer hubs and suggest that MYC invades into enhancers through spatial proximity. At the same time, the increased protein–protein interactions may strengthen these chromatin interactions to increase chromatin contact frequency. CTCF siRNA knockdown in MYC-overexpressed U2OS cells demonstrated that removal of architectural proteins can disperse MYC and abrogate the increase in chromatin contacts. By elucidating the chromatin landscape of MYC-driven cancers, we can potentially target MYC-associated chromatin interactions for cancer therapy.
Collapse
Affiliation(s)
- Yi Xiang See
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Kaijing Chen
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Melissa J Fullwood
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
12
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Suryatenggara J, Yong KJ, Tenen DE, Tenen DG, Bassal MA. ChIP-AP: an integrated analysis pipeline for unbiased ChIP-seq analysis. Brief Bioinform 2021; 23:6489109. [PMID: 34965583 PMCID: PMC8769893 DOI: 10.1093/bib/bbab537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a technique used to identify protein–DNA interaction sites through antibody pull-down, sequencing and analysis; with enrichment ‘peak’ calling being the most critical analytical step. Benchmarking studies have consistently shown that peak callers have distinct selectivity and specificity characteristics that are not additive and seldom completely overlap in many scenarios, even after parameter optimization. We therefore developed ChIP-AP, an integrated ChIP-seq analysis pipeline utilizing four independent peak callers, which seamlessly processes raw sequencing files to final result. This approach enables (1) better gauging of peak confidence through detection by multiple algorithms, and (2) more thoroughly surveys the binding landscape by capturing peaks not detected by individual callers. Final analysis results are then integrated into a single output table, enabling users to explore their data by applying selectivity and sensitivity thresholds that best address their biological questions, without needing any additional reprocessing. ChIP-AP therefore presents investigators with a more comprehensive coverage of the binding landscape without requiring additional wet-lab observations.
Collapse
Affiliation(s)
- Jeremiah Suryatenggara
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Kol Jia Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Boston, 02138, USA
| | - Mahmoud A Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Boston, 02138, USA
| |
Collapse
|
14
|
Yang J, Gao C, Liu M, Liu YC, Kwon J, Qi J, Tian X, Stein A, Liu YV, Kong NR, Wu Y, Yin S, Xi J, Chen Z, Kumari K, Wong H, Luo H, Silberstein LE, Thoms JAI, Unnikrishnan A, Pimanda JE, Tenen DG, Chai L. Targeting an Inducible SALL4-Mediated Cancer Vulnerability with Sequential Therapy. Cancer Res 2021; 81:6018-6028. [PMID: 34593523 PMCID: PMC8639708 DOI: 10.1158/0008-5472.can-21-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Oncofetal protein SALL4 is critical for cancer cell survival. Targeting SALL4, however, is only applicable in a fraction of cancer patients who are positive for this gene. To overcome this limitation, we propose to induce a cancer vulnerability by engineering a partial dependency upon SALL4. Following exogenous expression of SALL4, SALL4-negative cancer cells became partially dependent on SALL4. Treatment of SALL4-negative cells with the FDA-approved hypomethylating agent 5-aza-2'-deoxycytidine (DAC) resulted in transient upregulation of SALL4. DAC pretreatment sensitized SALL4-negative cancer cells to entinostat, which negatively affected SALL4 expression through a microRNA, miRNA-205, both in culture and in vivo. Moreover, SALL4 was essential for the efficiency of sequential treatment of DAC and entinostat. Overall, this proof-of-concept study provides a framework whereby the targeting pathways such as SALL4-centered therapy can be expanded, sensitizing cancer cells to treatment by transient target induction and engineering a dependency. SIGNIFICANCE: These findings provide a therapeutic approach for patients harboring no suitable target by induction of a SALL4-mediated vulnerability.
Collapse
Affiliation(s)
- Junyu Yang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yao-Chung Liu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Junsu Kwon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xi Tian
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alicia Stein
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yanjing V Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yue Wu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shenyi Yin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Jianzhong Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhiyuan Chen
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kalpana Kumari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hannan Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hongbo Luo
- Joint Program in Transfusion Medicine, Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Leslie E Silberstein
- Joint Program in Transfusion Medicine, Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Julie A I Thoms
- School of Medical Sciences and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Ashwin Unnikrishnan
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
- Department of Hematology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
15
|
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol Sci 2021; 185:64-76. [PMID: 34718823 DOI: 10.1093/toxsci/kfab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Igor N Zelko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sujith Dassanayaka
- Diabetes and Obesity Center.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V Malovichko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Caitlin M Howard
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Lauren F Garrett
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Kenneth R Brittian
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Daniel J Conklin
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Steven P Jones
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
16
|
Hoppe MM, Jaynes P, Wardyn JD, Upadhyayula SS, Tan TZ, Lie S, Lim DGZ, Pang BNK, Lim S, P S Yeong J, Karnezis A, Chiu DS, Leung S, Huntsman DG, Sedukhina AS, Sato K, Topp MD, Scott CL, Choi H, Patel NR, Brown R, Kaye SB, Pitt JJ, Tan DSP, Jeyasekharan AD. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med 2021; 13:e13366. [PMID: 33709473 PMCID: PMC8103098 DOI: 10.15252/emmm.202013366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer. We therefore designed a REMARK-compliant study of pre-treatment RAD51 expression in EOC, using fluorescent quantitative immunohistochemistry (qIHC) to overcome challenges in quantitation of protein expression in situ. In a discovery cohort (n = 284), RAD51-High tumours had shorter progression-free and overall survival compared to RAD51-Low cases in univariate and multivariate analyses. The association of RAD51 with relapse/survival was validated in a carboplatin monotherapy SCOTROC4 clinical trial cohort (n = 264) and was predominantly noted in HR-proficient cancers (Myriad HRDscore < 42). Interestingly, overexpression of RAD51 modified expression of immune-regulatory pathways in vitro, while RAD51-High tumours showed exclusion of cytotoxic T cells in situ. Our findings highlight RAD51 expression as a determinant of platinum resistance and suggest possible roles for therapy to overcome immune exclusion in RAD51-High EOC. The qIHC approach is generalizable to other proteins with a continuum instead of discrete/bimodal expression.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Patrick Jaynes
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joanna D Wardyn
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | | | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Stefanus Lie
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Diana G Z Lim
- Department of PathologyNational University HospitalSingapore
| | - Brendan N K Pang
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University HospitalSingapore
| | - Sherlly Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joe P S Yeong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Anthony Karnezis
- British Columbia Cancer AgencyVancouverBCCanada
- Present address:
Pathology and Lab medicineUC Davis Medical CentreSacramentoCAUSA
| | | | | | | | - Anna S Sedukhina
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Ko Sato
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Monique D Topp
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Hyungwon Choi
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | | | - Robert Brown
- Division of CancerImperial College LondonLondonUK
| | - Stan B Kaye
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Jason J Pitt
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - David S P Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| |
Collapse
|
17
|
Han J, An O, Hong H, Chan THM, Song Y, Shen H, Tang SJ, Lin JS, Ng VHE, Tay DJT, Molias FB, Pitcheshwar P, Tan HQ, Yang H, Chen L. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. SCIENCE ADVANCES 2020; 6:eaba5136. [PMID: 32596459 PMCID: PMC7299630 DOI: 10.1126/sciadv.aba5136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 05/02/2023]
Abstract
RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|