1
|
Dahm K, Vijayarangakannan P, Wollscheid HP, Schild H, Rajalingam K. Atypical MAPKs in cancer. FEBS J 2024. [PMID: 39348153 DOI: 10.1111/febs.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.
Collapse
Affiliation(s)
- Katrin Dahm
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Germany
| | | | | | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, JGU-Mainz, Germany
| | | |
Collapse
|
2
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
3
|
Sahadevan P, Dingar D, Nawaito SA, Nair RS, Trépanier J, Sahmi F, Shi Y, Gillis MA, Sirois MG, Meloche S, Tardif JC, Allen BG. ERK3 is involved in regulating cardiac fibroblast function. Physiol Rep 2024; 12:e16108. [PMID: 38872461 PMCID: PMC11176743 DOI: 10.14814/phy2.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-β-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.
Collapse
Affiliation(s)
- Pramod Sahadevan
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Dharmendra Dingar
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sherin A Nawaito
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Reshma S Nair
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Joëlle Trépanier
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Fatiha Sahmi
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Yanfen Shi
- Montreal Heart Institute, Montréal, Québec, Canada
| | | | - Martin G Sirois
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Meloche
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
5
|
Park JI. MAPK-ERK Pathway. Int J Mol Sci 2023; 24:9666. [PMID: 37298618 PMCID: PMC10253477 DOI: 10.3390/ijms24119666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The name extracellular signal-regulated kinase (ERK) was first used for a cell cycle regulating Ser/Thr protein kinase cloned in mammalian cells [...].
Collapse
Affiliation(s)
- Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Myers AK, Morel M, Gee SH, Hoffmann KA, Long W. ERK3 and DGKζ interact to modulate cell motility in lung cancer cells. Front Cell Dev Biol 2023; 11:1192221. [PMID: 37287450 PMCID: PMC10242005 DOI: 10.3389/fcell.2023.1192221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) promotes cell migration and tumor metastasis in multiple cancer types, including lung cancer. The extracellular-regulated kinase 3 protein has a unique structure. In addition to the N-terminal kinase domain, ERK3 includes a central conserved in extracellular-regulated kinase 3 and ERK4 (C34) domain and an extended C-terminus. However, relatively little is known regarding the role(s) of the C34 domain. A yeast two-hybrid assay using extracellular-regulated kinase 3 as bait identified diacylglycerol kinase ζ (DGKζ) as a binding partner. DGKζ was shown to promote migration and invasion in some cancer cell types, but its role in lung cancer cells is yet to be described. The interaction of extracellular-regulated kinase 3 and DGKζ was confirmed by co-immunoprecipitation and in vitro binding assays, consistent with their co-localization at the periphery of lung cancer cells. The C34 domain of ERK3 was sufficient for binding to DGKζ, while extracellular-regulated kinase 3 bound to the N-terminal and C1 domains of DGKζ. Surprisingly, in contrast to extracellular-regulated kinase 3, DGKζ suppresses lung cancer cell migration, suggesting DGKζ might inhibit ERK3-mediated cell motility. Indeed, co-overexpression of exogenous DGKζ and extracellular-regulated kinase 3 completely blocked the ability of ERK3 to promote cell migration, but DGKζ did not affect the migration of cells with stable ERK3 knockdown. Furthermore, DGKζ had little effect on cell migration induced by overexpression of an ERK3 mutant missing the C34 domain, suggesting DGKζ requires this domain to prevent ERK3-mediated increase in cell migration. In summary, this study has identified DGKζ as a new binding partner and negative regulator of extracellular-regulated kinase 3 in controlling lung cancer cell migration.
Collapse
Affiliation(s)
- Amanda K. Myers
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Stephen H. Gee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Katherine A. Hoffmann
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| |
Collapse
|
7
|
Fu L, Wang X, Yang Y, Chen M, Kuerban A, Liu H, Dong Y, Cai Q, Ma M, Wu X. Septin11 promotes hepatocellular carcinoma cell motility by activating RhoA to regulate cytoskeleton and cell adhesion. Cell Death Dis 2023; 14:280. [PMID: 37080972 PMCID: PMC10119145 DOI: 10.1038/s41419-023-05726-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
Septins as GTPases in the cytoskeleton, are linked to a broad spectrum of cellular functions, including cell migration and the progression of hepatocellular carcinoma (HCC). However, roles of SEPT11, the new member of septin, have been hardly understood in HCC. In the study, the clinical significance and biological function of SEPT11 in HCC was explored. SEPT11 was screened out by combining ATAC-seq with mRNA-seq. Role of SEPT11 in HCC was further investigated by using overexpression, shRNA and CRISPR/Cas9-mediated SEPT11-knockout cells or in vivo models. We found RNA-seq and ATAC-seq highlights LncRNA AY927503 (AY) induced SEPT11 transcription, resulting in Rho GTPase activation and cytoskeleton actin aggregation. The GTP-binding protein SEPT11 is thus considered, as a downstream factor of AY, highly expressed in various tumors, including HCC, and associated with poor prognosis of the patients. In vitro, SEPT11 overexpression promotes the migration and invasion of HCC cells, while SEPT11-knockout inhibits migration and invasion. In vivo, SEPT11-overexpressed HCC cells show high metastasis incidents but don't significantly affect proliferation. Meanwhile, we found SEPT11 targets RhoA, thereby regulating cytoskeleton rearrangement and abnormal cell adhesion through ROCK1/cofilin and FAK/paxillin signaling pathways, promoting invasion and migration of HCC. Further, we found SEPT11 facilitates the binding of GEF-H1 to RhoA, which enhances the activity of RhoA. Overall, our study confirmed function of SEPT11 in promoting metastasis in HCC, and preliminarily explored its related molecular mechanism. SEPT11 acts as an oncogene in HCC, also draws further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Lisheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - MeiHua Chen
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Adilijiang Kuerban
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Fudan University, 200040, Shanghai, People's Republic of China
| | - Haojie Liu
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Yiwei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - QianQian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China.
| | - Mingzhe Ma
- Department of Gastric Surgery, Shanghai Cancer Center of Fudan University, 200032, Shanghai, People's Republic of China.
| | - XingZhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
9
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
10
|
Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth. Oncogene 2022; 41:1752-1766. [PMID: 35124697 PMCID: PMC8933280 DOI: 10.1038/s41388-022-02203-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
AbstractEGLN3 is critically important for growth of various cancers including lung cancer. However, virtually nothing is known about the role and mechanism for EGLN3 hydroxylase activity in cancers. EGLN3 catalyzes the hydroxylation of extracellular signal-regulated kinase 3 (Erk3), a potent driver of cancers. The role and mechanism for EGLN3-induced stabilization of Erk3 remain to be defined. Here, we show that Erk3 interacts with heat shock cognate protein of 70 kDa (HSC70) and lysosome-associated membrane protein type 2 A (LAMP2A), two core components of chaperone-mediated autophagy (CMA). As a consequence, Erk3 is degraded by the CMA-lysosome pathway. EGLN3-catalyzed hydroxylation antagonizes CMA-dependent destruction of Erk3. Mechanistically, hydroxylation blunts the interaction of Erk3 with LAMP2A, thereby blocking lysosomal decay of Erk3. EGLN3 inactivation inhibits macrophage migration, efferocytosis, and M2 polarization. Studies using EGLN3 catalytically inactive knock-in mice indicate that inactivation of EGLN3 hydroxylase in host cells ameliorates LLC cancer growth through reprogramming the tumor microenvironment (TME). Adoptive transfer of macrophages with inactivated EGLN3 restrains tumor growth by mounting anti-tumor immunity and restricting angiogenesis. Administration of EGLN3 hydroxylase pharmacologic inhibitor to mice bearing LLC carcinoma impedes cancer growth by targeting the TME. LLC cells harboring inactivated EGLN3 exhibit reduced tumor burden via mitigating immunosuppressive milieu and inducing cancer senescence. This study provides novel insights into the role of CMA in regulating Erk3 stability and the mechanism behind EGLN3-enhanced stability of Erk3. This work demonstrates that inactivation of EGLN3 in malignant and stromal cells suppresses tumor by orchestrating reciprocal interplays between cancer cells and the TME. This work sheds new light on the role and mechanism for EGLN3 catalytic activity in regulating cancer growth. Manipulating EGLN3 activity holds promise for cancer treatment.
Collapse
|
11
|
Vallabhaneni S, Liu J, Morel M, Wang J, DeMayo FJ, Long W. Conditional ERK3 overexpression cooperates with PTEN deletion to promote lung adenocarcinoma formation in mice. Mol Oncol 2021; 16:1184-1199. [PMID: 34719109 PMCID: PMC8895443 DOI: 10.1002/1878-0261.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
ERK3, officially known as mitogen‐activated protein kinase 6 (MAPK6), is a poorly studied mitogen‐activated protein kinase (MAPK). Recent studies have revealed the upregulation of ERK3 expression in cancer and suggest an important role for ERK3 in promoting cancer cell growth and invasion in some cancers, in particular lung cancer. However, it is unknown whether ERK3 plays a role in spontaneous tumorigenesis in vivo. To determine the role of ERK3 in lung tumorigenesis, we created a conditional ERK3 transgenic mouse line in which ERK3 transgene expression is controlled by Cre recombinase. By crossing these transgenic mice with a mouse line harboring a lung tissue–specific Cre recombinase transgene driven by a club cell secretory protein gene promoter (CCSP‐iCre), we have found that conditional ERK3 overexpression cooperates with phosphatase and tensin homolog (PTEN) deletion to induce the formation of lung adenocarcinomas (LUADs). Mechanistically, ERK3 overexpression stimulates activating phosphorylations of erb‐b2 receptor tyrosine kinases 2 and 3 (ERBB2 and ERBB3) by upregulating Sp1 transcription factor (SP1)–mediated gene transcription of neuregulin 1 (NRG1), a potent ligand for ERBB2/ERBB3. Our study has revealed a bona fide tumor‐promoting role for ERK3 using genetically engineered mouse models. Together with previous findings showing the roles of ERK3 in cultured cells and in a xenograft lung tumor model, our findings corroborate that ERK3 acts as an oncoprotein in promoting LUAD development and progression.
Collapse
Affiliation(s)
- Sreeram Vallabhaneni
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park (RTP), NC, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
12
|
Thomas K, Ayse C, Natalia K, Peter B, Bedriye SH, Praveen G, Hakan A, Markus S, Wolfgang S, Yeong-Hoon C, Miroslav B, Manfred R. The MEK/ERK Module Is Reprogrammed in Remodeling Adult Cardiomyocytes. Int J Mol Sci 2020; 21:ijms21176348. [PMID: 32882982 PMCID: PMC7503571 DOI: 10.3390/ijms21176348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal and hypertrophic remodeling are hallmarks of cardiac restructuring leading chronically to heart failure. Since the Ras/Raf/MEK/ERK cascade (MAPK) is involved in the development of heart failure, we hypothesized, first, that fetal remodeling is different from hypertrophy and, second, that remodeling of the MAPK occurs. To test our hypothesis, we analyzed models of cultured adult rat cardiomyocytes as well as investigated myocytes in the failing human myocardium by western blot and confocal microscopy. Fetal remodeling was induced through endothelial morphogens and monitored by the reexpression of Acta2, Actn1, and Actb. Serum-induced hypertrophy was determined by increased surface size and protein content of cardiomyocytes. Serum and morphogens caused reprogramming of Ras/Raf/MEK/ERK. In both models H-Ras, N-Ras, Rap2, B- and C-Raf, MEK1/2 as well as ERK1/2 increased while K-Ras was downregulated. Atrophy, MAPK-dependent ischemic resistance, loss of A-Raf, and reexpression of Rap1 and Erk3 highlighted fetal remodeling, while A-Raf accumulation marked hypertrophy. The knock-down of B-Raf by siRNA reduced MAPK activation and fetal reprogramming. In conclusion, we demonstrate that fetal and hypertrophic remodeling are independent processes and involve reprogramming of the MAPK.
Collapse
Affiliation(s)
- Kubin Thomas
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Cetinkaya Ayse
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Kubin Natalia
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Bramlage Peter
- Institute for Pharmacology and Preventive Medicine, Bahnhofstraße 20, 49661 Cloppenburg, Germany;
| | - Sen-Hild Bedriye
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Gajawada Praveen
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Akintürk Hakan
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Schönburg Markus
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Schaper Wolfgang
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Choi Yeong-Hoon
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 60590 Frankfurt/Main, Germany
| | - Barancik Miroslav
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Richter Manfred
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| |
Collapse
|