1
|
Wu T, Yang J, Xia J, Sun G. Effects of Licorice Functional Components Intakes on Blood Pressure: A Systematic Review with Meta-Analysis and NETWORK Toxicology. Nutrients 2024; 16:3768. [PMID: 39519602 PMCID: PMC11547873 DOI: 10.3390/nu16213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To investigate the effects of licorice functional ingredient intake on blood pressure, explore its potential mechanisms of action, and provide safety information for personalized nutritional interventions in special populations and for the application of licorice-derived functional foods. METHODS PubMed, Cochrane Library, Medline, Embase, EBSCO, ScienceDirect, and Web of Science databases were searched from inception to 31 August 2024. Randomized controlled trials (RCTs) investigating the intake of licorice or its functional components were included. The range of continuous variables was assessed using the weighted mean difference (WMD) with 95% confidence intervals. Genes associated with hypertension were screened using an online database. Machine learning, receiver operating characteristic(ROC) curve analysis, molecular docking, and gene set enrichment analysis (GSEA) were employed to explore the potential mechanisms underlying licorice-induced blood pressure fluctuations. RESULTS Eight RCTs (541 participants) were included in the meta-analysis, which indicated interventions containing glycyrrhizic acid (GA) as the main component increased systolic blood pressure (SBP) and diastolic blood pressure (DBP) (SBP: WMD [95% CI] = 3.48 [2.74, 4.21], p < 0.001; DBP: WMD [95% CI] = 1.27 [0.76, 1.78], p < 0.001). However, interventions dominated by licorice flavonoids(LF) had no significant effect on SBP or DBP (SBP: WMD [95% CI] = 0.58 [-1.15, 2.31], p = 0.511; DBP: WMD [95% CI] = 0.17 [-1.53, 1.88], p = 0.843). Three machine learning algorithms identified five biomarkers associated with hypertension: calmodulin 3 (CALM3), cluster of differentiation 9 (CD9), growth factor independence 1B transcriptional repressor (GFI1B), myosin light chain kinase (MYLK), and Ras suppressor-1 (RSU1). After removing biomarkers with lower validity and reliability, GFI1B, MYLK, and RSU1 were selected for subsequent analysis. The network toxicology results suggested that GA and its metabolite glycyrrhetinic acid may act on GFI1B, MYLK, and RSU1, influencing blood pressure fluctuations by modulating nitrogen metabolism signaling pathways. CONCLUSIONS There were distinct differences in the effects of licorice functional components on blood pressure. Functional constituents dominated by GA were shown to increase both SBP and DBP, whereas those dominated by LF did not exhibit significant effects on blood pressure. The hypertensive mechanism of GA may involve the modulation of GFI1B, MYLK, and RSU1 to regulate nitrogen metabolic pathways.
Collapse
Affiliation(s)
- Tianyu Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingyi Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Liu Y, Yeh PK, Lin YK, Liang CS, Tsai CL, Lin GY, An YC, Tsai MC, Hung KS, Yang FC. Genetic Risk Loci and Familial Associations in Migraine: A Genome-Wide Association Study in the Han Chinese Population of Taiwan. J Clin Neurol 2024; 20:439-449. [PMID: 38951977 PMCID: PMC11220351 DOI: 10.3988/jcn.2023.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Migraine is a condition that is often observed to run in families, but its complex genetic background remains unclear. This study aimed to identify the genetic factors influencing migraines and their potential association with the family medical history. METHODS We performed a comprehensive genome-wide association study of a cohort of 1,561 outpatients with migraine and 473 individuals without migraine in Taiwan, including Han Chinese individuals with or without a family history of migraine. By analyzing the detailed headache history of the patients and their relatives we aimed to isolate potential genetic markers associated with migraine while considering factors such as sex, episodic vs. chronic migraine, and the presence of aura. RESULTS We revealed novel genetic risk loci, including rs2287637 in DEAD-Box helicase 1 and long intergenic non-protein coding RNA 1804 and rs12055943 in engulfment and cell motility 1, that were correlated with the family history of migraine. We also found a genetic location downstream of mesoderm posterior BHLH transcription factor 2 associated with episodic migraine, whereas loci within the ubiquitin-specific peptidase 26 exonic region, dual specificity phosphatase 9 and pregnancy-upregulated non-ubiquitous CaM kinase intergenic regions, and poly (ADP-ribose) polymerase 1 and STUM were linked to chronic migraine. We additionally identified genetic regionsassociated with the presence or absence of aura. A locus between LINC02561 and urocortin 3 was predominantly observed in female patients. Moreover, three different single-nucleotide polymorphisms were associated with the family history of migraine in the control group. CONCLUSIONS This study has identified new genetic locations associated with migraine and its family history in a Han Chinese population, reinforcing the genetic background of migraine. The findings point to potential candidate genes that should be investigated further.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Fei Y, Wu Y, Chen L, Yu H, Pan L. Comprehensive pan-carcinoma analysis of ITGB1 distortion and its potential clinical significance for cancer immunity. Discov Oncol 2024; 15:47. [PMID: 38402311 PMCID: PMC10894187 DOI: 10.1007/s12672-024-00901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
The human protein-coding gene ITGB1 (Integrin 1), also known as CD29, has a length of 58048 base pairs. The Integrin family's most prevalent subunit, it participates in the transmission of numerous intracellular signaling pathways. A thorough examination of ITGB1's functions in human malignancies, however, is inadequate and many of their relationships to the onset and development of human cancers remain unknown. In this work, we examined ITGB1's role in 33 human cancers. Finally, a multi-platform analysis revealed that three of the 33 malignancies had significantly altered ITGB1 expression in tumor tissues in comparison to normal tissues. In addition, it was discovered through survival analysis that ITGB1 was a stand-alone prognostic factor in a number of cancers. ITGB1 expression was linked to immune cell infiltration in colon cancer, according to an investigation of immune infiltration in pan-cancer. In the gene co-expression research, ITGB1 showed a positive connection with the majority of the cell proliferation and EMT indicators, indicating that ITGB1 may have an essential function in controlling cancer metastasis and proliferation. Our pan-cancer analysis of ITGB1 gives evidence in favor of a further investigation into its oncogenic function in various cancer types.
Collapse
Affiliation(s)
- Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiashan Hospital Affiliated of Jiaxing University, Jiashan, Zhejiang, China.
| | - Yulun Wu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Huan Yu
- The Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Xu Y, Hou YY, Wu Z, Fang ZX, Wu HT, Liu J. Comprehensive analysis of cell-extracellular matrix protein Ras suppressor-1 in function and prognosis of gastrointestinal cancers. World J Methodol 2023; 13:223-237. [PMID: 37771863 PMCID: PMC10523239 DOI: 10.5662/wjm.v13.i4.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Ras suppressor 1 (RSU1), a highly conserved protein, plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion. Aberration of RSU1 activity can cause changes in cell adhesion and migration, thereby enhancing tumor proliferation and metastasis. However, the correlation between RSU1 and gastrointestinal cancers (GICs), as well as its prognostic role related to tumor-infiltrating immune cells (TIICs) remains unclear. AIM To shows RSU1 plays a potential promoting role in facilitating tumor immune escape in GIC. METHODS Differential expression of RSU1 in different tumors and their corresponding normal tissues was evaluated by exploring the Gene Expression Profiling Interactive Analysis (GEPIA) dataset. The correlation between RSU1 expression and prognosis of GIC cancer patients was evaluated by Kaplan-Meier plotter. Then, RSU1-correlated genes were screened and functionally characterized via enrichment analysis. The correlation between RSU1 and TIICs was further characterized using the Tumor Immune Estimation Resource (TIMER). In addition, the correlation between RSU1 and immune cell surface molecules was also analyzed by TIMER. RESULTS High RSU1 expression was associated with poor overall survival of gastric cancer patients, exhibiting a hazard ratio (HR) = 1.36, first progression HR = 1.53, and post progression survival HR = 1.6. Specifically, high RSU1 Levels were associated with prognosis of gastric cancer in females, T4 and N3 stages, and Her-2-negative subtypes. Regarding immune-infiltrating cells, RSU1 expression level was positively correlated with infiltration of CD4+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in colorectal adenocarcinoma and stomach adenocarcinoma. RSU1 expression was also predicted to be strongly correlated with immune marker sets in M2 macrophage, DCs and T cell exhaustion in GICs. CONCLUSION In gastrointestinal cancers, RSU1 is increased in tumor tissues, and predicts poor survival of patients. Increased RSU1 may be involved in promoting macrophage polarization, DC infiltration, and T cell exhaustion, inducing tumor immune escape and the development of tumors in GICs. We suggest that RSU1 is a promising prognostic biomarker reflecting immune infiltration level of GICs, as well as a potential therapeutic target for precision treatment through improving the immune response.
Collapse
Affiliation(s)
- Ya Xu
- Department of Radiation Oncology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei 516600, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
5
|
Saini S, Khurana S, Saini D, Rajput S, Thakur CJ, Singh J, Jaswal A, Kapoor Y, Kumar V, Saini A. In silico analysis of genomic landscape of SARS-CoV-2 and its variant of concerns (Delta and Omicron) reveals changes in the coding potential of miRNAs and their target genes. Gene 2023; 853:147097. [PMID: 36470485 PMCID: PMC9721428 DOI: 10.1016/j.gene.2022.147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 related morbidities and mortalities are still continued due to the emergence of new variants of SARS-CoV-2. In the last few years, viral miRNAs have been the centre of study to understand the disease pathophysiology. In this work, we aimed to predict the change in coding potential of the viral miRNAs in SARS-CoV-2's VOCs, Delta and Omicron compared to the Reference (Wuhan origin) strain using bioinformatics tools. After ab-intio based screening by the Vmir tool and validation, we retrieved 22, 6, and 6 pre-miRNAs for Reference, Delta, and Omicron. Most of the predicted unique pre-miRNAs of Delta and Omicron were found to be encoded from the terminal and origin of the genomic sequence, respectively. Mature miRNAs identified by MatureBayes from the unique pre-miRNAs were used for target identification using miRDB. A total of 1786, 216, and 143 high-confidence target genes were captured for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The GO and KEGG pathways terms analysis revealed the involvement of Delta miRNAs targeted genes in the pathways such as Human cytomegalovirus infection, Breast cancer, Apoptosis, Neurotrophin signaling, and Axon guidance whereas the Sphingolipid signaling pathway was found for the Omicron. Furthermore, we focussed our analysis on target genes that were validated through GEO's (Gene Expression Omnibus) DEGs (Differentially Expressed Genes) dataset, in which FGL2, TNSF12, OGN, GDF11, and BMP11 target genes were found to be down-regulated by Reference miRNAs and YAE1 and RSU1 by Delta. Few genes were also observed to be validated among in up-regulated gene set of the GEO dataset, in which MMP14, TNFRSF21, SGMS1, and TMEM192 were related to Reference whereas ZEB2 was detected in all three strains. This study thus provides an in-silico based analysis that deciphered the unique pre-miRNAs in Delta and Omicron compared to Reference. However, the findings need future wet lab studies for validation.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India; Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Savi Khurana
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Dikshant Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Saru Rajput
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Jeevisha Singh
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Akanksha Jaswal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Yogesh Kapoor
- Department of Engineering and Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varinder Kumar
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32, Chandigarh 160030, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
6
|
LincRNAs and snoRNAs in Breast Cancer Cell Metastasis: The Unknown Players. Cancers (Basel) 2022; 14:cancers14184528. [PMID: 36139687 PMCID: PMC9496948 DOI: 10.3390/cancers14184528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in research have led to earlier diagnosis and targeted therapies against breast cancer, which has resulted in reduced breast cancer-related mortality. However, the majority of breast cancer-related deaths are due to metastasis of cancer cells to other organs, a process that has not been fully elucidated. Among the factors and genes implicated in the metastatic process regulation, non-coding RNAs have emerged as crucial players. This review focuses on the role of long intergenic noncoding RNAs (lincRNAs) and small nucleolar RNAs (snoRNAs) in breast cancer cell metastasis. LincRNAs are transcribed between two protein-coding genes and are longer than 200 nucleotides, they do not code for a specific protein but function as regulatory molecules in processes such as cell proliferation, apoptosis, epithelial-to-mesenchymal transition, migration, and invasion while most of them are highly elevated in breast cancer tissues and seem to function as competing endogenous RNAs (ceRNAs) inhibiting relevant miRNAs that specifically target vital metastasis-related genes. Similarly, snoRNAs are 60-300 nucleotides long and are found in the nucleolus being responsible for the post-transcriptional modification of ribosomal and spliceosomal RNAs. Most snoRNAs are hosted inside intron sequences of protein-coding and non-protein-coding genes, and they also regulate metastasis-related genes affecting related cellular properties.
Collapse
|
7
|
miRNome and Proteome Profiling of Small Extracellular Vesicles Secreted by Human Glioblastoma Cell Lines and Primary Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10081886. [PMID: 36009432 PMCID: PMC9405730 DOI: 10.3390/biomedicines10081886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite available therapeutic interventions, it is very difficult to treat, and a cure is not yet available. The intra-tumoral GBM heterogeneity is a crucial factor contributing to poor clinical outcomes. GBM derives from a small heterogeneous population of cancer stem cells (CSCs). In cancer tissue, CSCs are concentrated within the so-called niches, where they progress from a slowly proliferating phase. CSCs, as most tumor cells, release extracellular vesicles (EVs) into the surrounding microenvironment. To explore the role of EVs in CSCs and GBM tumor cells, we investigated the miRNA and protein content of the small EVs (sEVs) secreted by two GBM-established cell lines and by GBM primary CSCs using omics analysis. Our data indicate that GBM-sEVs are selectively enriched for miRNAs that are known to display tumor suppressor activity, while their protein cargo is enriched for oncoproteins and tumor-associated proteins. Conversely, among the most up-regulated miRNAs in CSC-sEVs, we also found pro-tumor miRNAs and proteins related to stemness, cell proliferation, and apoptosis. Collectively, our findings support the hypothesis that sEVs selectively incorporate different miRNAs and proteins belonging both to fundamental processes (e.g., cell proliferation, cell death, stemness) as well as to more specialized ones (e.g., EMT, membrane docking, cell junction organization, ncRNA processing).
Collapse
|
8
|
Geramoutsou C, Nikou S, Karavias D, Arbi M, Tavlas P, Tzelepi V, Lygerou Z, Maroulis I, Bravou V. Focal adhesion proteins in hepatocellular carcinoma: RSU1 a novel tumour suppressor with prognostic significance. Pathol Res Pract 2022; 235:153950. [DOI: 10.1016/j.prp.2022.153950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
9
|
Yang H, Lin L, Sun K, Zhang T, Chen W, Li L, Xie Y, Wu C, Wei Z, Yu C. Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics. eLife 2021; 10:64395. [PMID: 33587032 PMCID: PMC7909951 DOI: 10.7554/elife.64395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.
Collapse
Affiliation(s)
- Haibin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Leishu Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lianghui Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, United States
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| |
Collapse
|