1
|
Tsai HC, Lien MY, Wang SW, Fong YC, Tang CH. Inhibiting Bruton's Tyrosine Kinase to Counteract Chemoresistance and Stem Cell-Like Properties in Osteosarcoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:4936-4945. [PMID: 38924303 DOI: 10.1002/tox.24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Osteosarcoma, a highly aggressive bone cancer, often develops resistance to conventional chemotherapeutics, leading to poor prognosis and survival rates. The malignancy and chemoresistance of osteosarcoma pose significant challenges in its treatment, highlighting the critical need for novel therapeutic approaches. Bruton's tyrosine kinase (BTK) plays a pivotal role in B-cell development and has been linked to various cancers, including breast, lung, and oral cancers, where it contributes to tumor growth and chemoresistance. Despite its established importance in these malignancies, the impact of BTK on osteosarcoma remains unexplored. Our study delves into the expression levels of BTK in osteosarcoma tissues by data from the GEO and TCGA database, revealing a marked increase in BTK expression compared with primary osteoblasts and a potential correlation with primary site progression. Through our investigations, we identified a subset of osteosarcoma cells, named cis-HOS, which exhibited resistance to cisplatin. These cells displayed characteristics of cancer stem cells (CSCs), demonstrated a higher angiogenesis effect, and had an increased migration ability. Notably, an upregulation of BTK was observed in these cisplatin-resistant cells. The application of ibrutinib, a BTK inhibitor, significantly mitigated these aggressive traits. Our study demonstrates that BTK plays a crucial role in conferring chemoresistance in osteosarcoma. The upregulation of BTK in cisplatin-resistant cells was effectively countered by ibrutinib. These findings underscore the potential of targeting BTK as an effective strategy to overcome chemoresistance in osteosarcoma treatment.
Collapse
Affiliation(s)
- Hsiao-Chi Tsai
- Department of Medicine Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Ming-Yu Lien
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Wang J, Nuray U, Yan H, Xu Y, Fang L, Li R, Zhou X, Zhang H. Pyroptosis is involved in the immune microenvironment regulation of unexplained recurrent miscarriage. Mamm Genome 2024; 35:256-279. [PMID: 38538990 DOI: 10.1007/s00335-024-10038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Unexplained recurrent miscarriage (URM) is a common pregnancy complication with few effective therapies. Moreover, little is known regarding the role of pyroptosis in the regulation of the URM immune microenvironment. To address this issue, gene expression profiles of publicly available placental datasets GSE22490 and GSE76862 were downloaded from the Gene Expression Omnibus database. Pyroptosis-related differentially expressed genes were identified and a total of 16 differentially expressed genes associated with pyroptosis were detected, among which 1 was upregulated and 15 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the functionally enriched modules and pathways of these genes are closely related to immune and inflammatory responses. Four hub genes were identified: BTK, TLR8, NLRC4, and TNFSF13B. BTK, TLR8, and TNFSF13B were highly connected with immune cells, according to the correlation analysis of four hub genes and 20 different types of immune cells (p < 0.05). The four hub genes were used as research objects to construct the interaction networks. Chorionic villus tissue was used for quantitative real-time polymerase chain reaction and western blot to confirm the expression levels of hub genes, and the results showed that the expression of the four hub genes was significantly decreased in the chorionic villus tissue in the URM group. Collectively, the present study indicates that perhaps pyroptosis is essential to the diversity and complexity of the URM immune microenvironment, and provides a theoretical basis and research ideas for subsequent target gene verification and mechanism research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Fang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ranran Li
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Xin Zhou
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Gray HJ, Chatterjee P, Rosati R, Appleyard LR, Durenberger GJ, Diaz RL, Swan HA, Peretti D, Pollastro M, Ainge T, Kapeli K, Pereira S, Margossian AL, Banda K, Goff BA, Swisher EM, Bernard B, Kemp CJ, Grandori C. Extraordinary clinical response to ibrutinib in low-grade ovarian cancer guided by organoid drug testing. NPJ Precis Oncol 2023; 7:45. [PMID: 37202426 PMCID: PMC10195827 DOI: 10.1038/s41698-023-00379-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) typically responds poorly to standard platinum-based chemotherapy and new therapeutic approaches are needed. We describe a remarkable response to targeted therapy in a patient with platinum-resistant, advanced LGSOC who had failed standard-of-care chemotherapy and two surgeries. The patient was in rapid decline and entering hospice care on home intravenous (i.v.) opioid analgesics and a malignant bowel obstruction requiring a G-tube. Genomic analysis of the patient's tumor did not indicate obvious therapeutic options. In contrast, a CLIA-certified drug sensitivity assay of an organoid culture derived from the patient's tumor identified several therapeutic choices, including Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, as well as the EGFR inhibitors afatinib and erlotinib. Following off-label administration of daily ibrutinib as monotherapy, the patient had an exceptional clinical turnaround over the following 65 weeks with normalization of CA-125 levels, resolution of the malignant bowel obstruction, halting of pain medications, and improvement of performance status from ECOG 3 to ECOG 1. After 65 weeks of stable disease, the patient's CA-125 levels began to rise, at which point the patient discontinued ibrutinib and began taking afatinib as monotherapy. The patient's CA-125 levels remained stable for an additional 38 weeks but due to anemia and rising CA-125 levels, the patient switched to erlotinib and is currently being monitored. This case highlights the clinical utility of ex vivo drug testing of patient-derived tumor organoids as a new functional precision medicine approach to identify effective personalized therapies for patients who have failed standard-of-care treatments.
Collapse
Affiliation(s)
- Heidi J Gray
- Division of Gynecology Oncology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kalyan Banda
- Clinical Research Division, Fred Hutchinson Cancer Center and Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Barbara A Goff
- Division of Gynecology Oncology, University of Washington, Seattle, WA, USA
| | | | - Brady Bernard
- SEngine Precision Medicine, Seattle, WA, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | |
Collapse
|
4
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
5
|
Ge S, Wang B, Wang Z, He J, Ma X. Common Multiple Primary Cancers Associated With Breast and Gynecologic Cancers and Their Risk Factors, Pathogenesis, Treatment and Prognosis: A Review. Front Oncol 2022; 12:840431. [PMID: 35756608 PMCID: PMC9213651 DOI: 10.3389/fonc.2022.840431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is closely related to the female reproductive system in many aspects, affecting the whole gynecological system. Breast cancer (BC) is the most common malignancy in women and associated with considerable negative effects. Due to various factors including co-pathogenic genetic mutations, environment factors, lifestyle, behavioral factors, treatment regimens and in-creased survival of patients with BC, there is an increased probability of developing additional primary gynecologic cancers such as ovarian cancer (OC), endometrial cancer (EC), and cervical cancer (CC). More and more studies have been conducted in recent years. Multiple primary cancers (MPCs), also known as multiple primary malignancies, refers to two or more different primary cancers in the same patient occurring in the same or different organs or tissues. The pathogenesis of multiple primary cancers is complex and has a negative effect on the prognosis and survival of patients. This review discusses the common types of BC-associated MPCs, namely, BC associated with OC, BC associated with EC and BC associated with CC, as well as risk factors, pathogenesis, treatment, and prognosis of MPCs associated with breast and gynecologic cancers. It provides new intervention and treatment ideas for patients with BC-associated MPCs to improve quality of life and prognosis.
Collapse
Affiliation(s)
- Shuwen Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Zihao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
6
|
Szklener K, Michalski A, Żak K, Piwoński M, Mańdziuk S. Ibrutinib in the Treatment of Solid Tumors: Current State of Knowledge and Future Directions. Cells 2022; 11:1338. [PMID: 35456016 PMCID: PMC9032968 DOI: 10.3390/cells11081338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is considered crucial in the activation and survival of both physiological and malignant B-cells. In recent years, ibrutinib, an oral BTK inhibitor, became a breakthrough therapy for hematological malignancies, such as chronic lymphocytic. However, ibrutinib's feasibility might not end there. Several other kinases with established involvement with solid malignancies (i.e., EGFR, HER2) have been found to be inhibited by this agent. Recent discoveries indicate that BTK is a potential anti-solid tumor therapy target. Consequently, ibrutinib, a BTK-inhibitor, has been studied as a therapeutic option in solid malignancies. While most preclinical studies indicate ibrutinib to be an effective therapeutic option in some specific indications, such as NSCLC and breast cancer, clinical trials contradict these observations. Nevertheless, while ibrutinib failed as a monotherapy, it might become an interesting part of a multidrug regime: not only has a synergism between ibrutinib and other compounds, such as trametinib or dactolisib, been observed in vitro, but this BTK inhibitor has also been established as a radio- and chemosensitizer. This review aims to describe the milestones in translating BTK inhibitors to solid tumors in order to understand the future potential of this agent better.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (M.P.); (S.M.)
| | | | | | | | | |
Collapse
|
7
|
Ruan Y, Xu H, Ji X. High expression of NPM1 via the Wnt/β-catenin signalling pathway might predict poor prognosis for patients with prostate adenocarcinoma. Clin Exp Pharmacol Physiol 2022; 49:525-535. [PMID: 35108408 DOI: 10.1111/1440-1681.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
Prostate adenocarcinoma (PRAD) occurs only in males and has a higher incidence rate than other cancers. NPM1 is a nucleocytoplasmic shuttling protein that participates in the development of multiple tumours. The aim of this research was to explore the effect of the upregulation or downregulation of the NPM1 protein on the malignancy of prostate cancer and its possible signalling pathway. Prostate adenocarcinoma cell lines were used in this study, including RWPE-1, PC3, LNCap, and 22RV1 cells. Our research revealed that NPM1 was widely expressed in the PRAD cell lines, as determined by Western blotting, and that the levels of NPM1 protein were positively correlated with the degree of malignancy of the PRAD cell lines. Through interference and overexpression experiments, we found that PC3 cells growth was inhibited after NPM1 knockdown and that this inhibition was partly reversed by CTNNB1 overexpression; in contrast, PC3 cells growth was promoted after NPM1 overexpression, and this promotion was partly reversed by CTNNB1 knockdown, suggesting that NPM1 and CTNNB1 play important roles in the progression of prostate cancer cells via the Wnt/β-catenin signalling pathway. NPM1 may serve as an important biomarker and candidate therapeutic for patients with prostate cancer.
Collapse
Affiliation(s)
- Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J, Bazhin AV. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells 2022; 11:cells11020310. [PMID: 35053426 PMCID: PMC8774531 DOI: 10.3390/cells11020310] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the main suppressive cell population of the immune system. They play a pivotal role in the establishment of the tumor microenvironment (TME). In the context of cancers or other pathological conditions, MDSCs can differentiate, expand, and migrate in large quantities during circulation, inhibiting the cytotoxic functions of T cells and NK cells. This process is regulated by ROS, iNOS/NO, arginase-1, and multiple soluble cytokines. The definition of MDSCs and their phenotypes in humans are not as well represented as in other organisms such as mice, owing to the absence of the cognate molecule. However, a comprehensive understanding of the differences between different species and subsets will be beneficial for clarifying the immunosuppressive properties and potential clinical values of these cells during tumor progression. Recently, experimental evidence and clinical investigations have demonstrated that MDSCs have a close relationship with poor prognosis and drug resistance, which is considered to be a leading marker for practical applications and therapeutic methods. In this review, we summarize the remarkable position of MDSCs in solid tumors, explain their classifications in different models, and introduce new treatment approaches to target MDSCs to better understand the advancement of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Tianmiao Ma
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
9
|
Wu J, Zhou J, Xu Q, Foley R, Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, Wang X, Hu D. Identification of Key Genes Driving Tumor Associated Macrophage Migration and Polarization Based on Immune Fingerprints of Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:751800. [PMID: 34805160 PMCID: PMC8600368 DOI: 10.3389/fcell.2021.751800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
The identification of reliable indicators in the tumor microenvironment (TME) is critical for tumor prognosis. Tumor associated macrophages (TAMs) are the major component of non-tumor stromal cells in TME and have increasingly been recognized as a predictive biomarker for lung adenocarcinoma (LUAD) prognosis. Here, we report the development of a prognosis model for LUAD using three immune-related genes (IRGs) detected in The Cancer Genome Atlas (TCGA) which potentially regulate TAMs in TME. In 497 LUAD patients, higher immune scores conferred better overall survival (OS). We identified 93 hub IRGs out of 234 for further prognostic significance. Among them, three IRGs (BTK, Cd1c, and S100P) were proved to be closely correlated to the prognosis of patients with LUAD. Moreover, the immune risk score (IRS) based on the gene expression level of the three IRGs was an independent prognostic factor for OS. Higher IRS predicted lower OS, higher mortality and worse tumor stage. With a good predictive ability [area under the ROC curve (AUC) in TCGA = 0.701, AUC in GEO = 0.722], the IRS contributed to a good risk stratification ability of the nomogram. Immunologically, the three IRGs were related to M1 macrophages and NK cell subsets in TME. Interestingly, by characterizing these immune components in situ we found that S100P is a driver for tumor cells to induce TAM migration and M2 polarization in the immunosuppressive tumor niche. We identified the key genes driving TAM migration and transformation and elucidated the immune landscape of LUAD. The data suggest that IRGs from TME have the potential to become indicators for estimating cancer prognosis and guiding individualized treatment.
Collapse
Affiliation(s)
- Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Qian Xu
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ruth Foley
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Xin Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Min Mu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Yingru Xing
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Xueqin Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
10
|
Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical Trials of the BTK Inhibitors Ibrutinib and Acalabrutinib in Human Diseases Beyond B Cell Malignancies. Front Oncol 2021; 11:737943. [PMID: 34778053 PMCID: PMC8585514 DOI: 10.3389/fonc.2021.737943] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
The BTK inhibitors ibrutinib and acalabrutinib are FDA-approved drugs for the treatment of B cell malignances. Both drugs have demonstrated clinical efficacy and safety profiles superior to chemoimmunotherapy regimens in patients with chronic lymphocytic leukemia. Mounting preclinical and clinical evidence indicates that both ibrutinib and acalabrutinib are versatile and have direct effects on many immune cell subsets as well as other cell types beyond B cells. The versatility and immunomodulatory effects of both drugs have been exploited to expand their therapeutic potential in a wide variety of human diseases. Over 470 clinical trials are currently registered at ClinicalTrials.gov to test the efficacy of ibrutinib or acalabrutinib not only in almost every type of B cell malignancies, but also in hematological malignancies of myeloid cells and T cells, solid tumors, chronic graft versus host disease (cGHVD), autoimmune diseases, allergy and COVID-19 (http:www.clinicaltrials.gov). In this review, we present brief discussions of the clinical trials and relevant key preclinical evidence of ibrutinib and acalabrutinib as monotherapies or as part of combination therapies for the treatment of human diseases beyond B cell malignancies. Adding to the proven efficacy of ibrutinib for cGVHD, preliminary results of clinical trials have shown promising efficacy of ibrutinib or acalabrutinib for certain T cell malignancies, allergies and severe COVID-19. However, both BTK inhibitors have no or limited efficacy for refractory or recurrent solid tumors. These clinical data together with additional pending results from ongoing trials will provide valuable information to guide the design and improvement of future trials, including optimization of combination regimens and dosing sequences as well as better patient stratification and more efficient delivery strategies. Such information will further advance the precise implementation of BTK inhibitors into the clinical toolbox for the treatment of different human diseases.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Zhu S, Gokhale S, Jung J, Spirollari E, Tsai J, Arceo J, Wu BW, Victor E, Xie P. Multifaceted Immunomodulatory Effects of the BTK Inhibitors Ibrutinib and Acalabrutinib on Different Immune Cell Subsets - Beyond B Lymphocytes. Front Cell Dev Biol 2021; 9:727531. [PMID: 34485307 PMCID: PMC8414982 DOI: 10.3389/fcell.2021.727531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
The clinical success of the two BTK inhibitors, ibrutinib and acalabrutinib, represents a major breakthrough in the treatment of chronic lymphocytic leukemia (CLL) and has also revolutionized the treatment options for other B cell malignancies. Increasing evidence indicates that in addition to their direct effects on B lymphocytes, both BTK inhibitors also directly impact the homeostasis, phenotype and function of many other cell subsets of the immune system, which contribute to their high efficacy as well as adverse effects observed in CLL patients. In this review, we attempt to provide an overview on the overlapping and differential effects of ibrutinib and acalabrutinib on specific receptor signaling pathways in different immune cell subsets other than B cells, including T cells, NK cells, monocytes, macrophages, granulocytes, myeloid-derived suppressor cells, dendritic cells, osteoclasts, mast cells and platelets. The shared and distinct effects of ibrutinib versus acalabrutinib are mediated through BTK-dependent and BTK-independent mechanisms, respectively. Such immunomodulatory effects of the two drugs have fueled myriad explorations of their repurposing opportunities for the treatment of a wide variety of other human diseases involving immune dysregulation.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Johann Arceo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ben Wang Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Uckun FM, Venkatachalam T. Targeting Solid Tumors With BTK Inhibitors. Front Cell Dev Biol 2021; 9:650414. [PMID: 33937249 PMCID: PMC8079762 DOI: 10.3389/fcell.2021.650414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
The repurposing of FDA-approved Bruton's tyrosine kinase (BTK) inhibitors as therapeutic agents for solid tumors may offer renewed hope for chemotherapy-resistant cancer patients. Here we review the emerging evidence regarding the clinical potential of BTK inhibitors in solid tumor therapy. The use of BTK inhibitors may through lead optimization and translational research lead to the development of new and effective combination regimens for metastatic and/or therapy-refractory solid tumor patients.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, LLC, St. Paul, MN, United States
| | | |
Collapse
|
13
|
Role of myeloid-derived suppressor cells in metastasis. Cancer Metastasis Rev 2021; 40:391-411. [PMID: 33411082 DOI: 10.1007/s10555-020-09947-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The spread of primary tumor cells to distant organs, termed metastasis, is the principal cause of cancer mortality and is a critical therapeutic target in oncology. Thus, a better understanding of metastatic progression is critical for improved therapeutic approaches requiring insight into the timing of tumor cell dissemination and seeding of distant organs, which can lead to the formation of occult lesions. However, due to limitations in imaging techniques, primary tumors can only be detected when they reach a relatively large size (e.g., > 1 cm3), which, based on our understanding of tumor evolution, is 10 to 20 years (30 doubling times) following tumor initiation. Recent insights into the timing of metastasis are based on the genomic profiling of paired primary tumors and metastases, suggesting that tumor cell seeding of secondary sites occurs early during tumor progression and years prior to diagnosis. Following seeding, tumor cells may remain in a dormant state as single cells or micrometastases before emerging as overt lesions. This timeline and the role of metastatic dormancy are regulated by interactions between the tumor, its microenvironment, and tumor-specific T cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would support the development of novel targeted therapeutics. We posit herein that the immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) are a major contributor to tumor progression, and that these mechanisms promote tumor cell escape from dormancy. Thus, while extensive studies have demonstrated a role for MDSCs in the escape from adoptive and innate immune responses (T-, natural killer (NK)-, and B cell responses), facilitating tumor progression and metastasis, few studies have considered their role in dormancy. In this review, we discuss the role of MDSC expansion, driven by tumor burden, and its role in escape from dormancy, resulting in occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies.
Collapse
|
14
|
Mehta L, Naved T, Grover P, Bhardwaj M, Mukherjee D. LC and LC-MS/MS studies for identification and characterization of new degradation products of ibrutinib and elucidation of their degradation pathway. J Pharm Biomed Anal 2020; 194:113768. [PMID: 33279300 DOI: 10.1016/j.jpba.2020.113768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022]
Abstract
Forced degradation/stress degradation studies of ibrutinib drug were done in hydrolytic (acidic, alkaline and neutral), thermal, photolytic and oxidative degradation conditions in different temperature conditions as per International Conference on Harmonization (ICH) guideline Q1A(R2) in order to identify and characterize degradation products (DPs) of ibrutinib. The study revealed that ibrutinib is extremely sensitive to oxidative degradation even at room temperature. The drug substance is highly sensitive to alkaline hydrolysis and susceptible to acidic hydrolysis at 80 °C temperature condition, whereas found stable in neutral, photolytic and thermal stress conditions. Successful separation of ibrutinib and its ten degradation products formed during stress degradation condition were observed using Waters Acquity UPLC C-18 stationary phase (100 mm × 2.1 mm, 1.7 μm) with gradient elution using mobile phase consisting of Eluent-A: ammonium acetate (20 mm, pH-6) and Eluent-B: acetonitrile. The detection was carried out at 215 nm wavelength. Flow rate was set at 0.3 mL/min with injection volume of 5 μL. The drug substance degraded to one degradation product (DP-I) in acidic hydrolysis, five DPs (DP-I, DP-II, DP-V, DP-VIII and DP-IX) in basic hydrolysis and five DPs (DP-III, DP-IV, DP-VI, DP-VII and DP-X) in oxidative degradation condition. A novel and highly sensitive HRMS/MS/TOF method was developed to identify and characterize all the ten DPs formed during stress study. All the DPs were characterized using ESI positive mode. Except DP-I, all the degradation products formed were found to be new degradation impurities and their fragmentation pathways have never been reported earlier. The proposed mechanism and pathway of degradation products of ibrutinib were discussed and outlined.
Collapse
Affiliation(s)
- Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India; Analytical Research & Development Department, TEVA API India Pvt. Ltd., Greater Noida, 201306, India.
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
15
|
Dong XD, Zhang M, Ma X, Wang JQ, Lei ZN, Teng QX, Li YD, Lin L, Feng W, Chen ZS. Bruton's Tyrosine Kinase (BTK) Inhibitor RN486 Overcomes ABCB1-Mediated Multidrug Resistance in Cancer Cells. Front Cell Dev Biol 2020; 8:865. [PMID: 32984343 PMCID: PMC7481333 DOI: 10.3389/fcell.2020.00865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1) remains one of the most vital factors leading to multidrug resistance (MDR). It is important to enhance the effect and bioavailability of chemotherapeutic drugs that are substrates of ABCB1 transporter in ABCB1-overexpression cancer cells and reverse ABCB1-mediated MDR. Previous, we uncovered that the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib is a potent reversal agent to overcomes paclitaxel resistance in ABCB1-overexpressing cells and tumors. In this study, we explored whether RN486, another BTK inhibitor, was competent to surmount ABCB1-mediated MDR and promote relevant cancer chemotherapy. We found that RN486 significantly increased the efficacy of paclitaxel and doxorubicin in both drug-selected carcinoma cells and transfected cells overexpressing ABCB1. Mechanistic studies indicated that RN486 dramatically attenuated the drug efflux activity of ABCB1 transporter without altering its expression level or subcellular localization. The ATPase activity of ABCB1 transporter was not affected by low concentrations but stimulated by high concentrations of RN486. Moreover, an interaction between RN486 with ABCB1 substrate-binding and inhibitor binding sites was verified by in silico docking simulation. The results from our study suggest that RN486 could be a reversal agent and could be used in the novel combination therapy with other antineoplastic drugs to conquer MDR-mediated by ABCB1 transporter in clinics.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Meng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiubin Ma
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Lusheng Lin
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Weiguo Feng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|