1
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
2
|
Ishak MAI, Aun TT, Sidek N, Mohamad S, Jumbri K, Abdul Manan NS. An enantioselective study of β-cyclodextrin and ionic liquid-β-cyclodextrin towards propranolol enantiomers by molecular dynamic simulations. J Comput Chem 2024; 45:1329-1351. [PMID: 38372509 DOI: 10.1002/jcc.27321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
In this study, the enantioselectivity of β-cyclodextrin and its derivatives towards propranolol enantiomers are investigated by molecular dynamic (MD) simulations. β-cyclodextrin (β-CD) have previously been shown to be able to recognize propranolol (PRP) enantiomers. To improve upon the enantioselectivity of β-cyclodextrin, we propose the use of an ionic-liquid-modified-β-cyclodextrin (β-CD-IL). β-CD-IL was found to be able to complex R and S propranolol enantiomers with differing binding energies. The molecular docking study reveals that the ionic liquid chain attached to the β-CD molecule has significant interaction with propranolol. The formation of the most stable complex occurred between (S)-β-CD-IL and (S)-propranolol with an energy of -5.80 kcal/mol. This is attributed to the formation of a hydrogen bond between the oxygen of the propranolol and the hydrogen on the primary rim of the (S)-β-CD-IL cavity. This interaction is not detected in other complexes. The root mean-squared fluctuation (RMSF) value indicates that the NH group is the most flexible molecular fragment, followed by the aromatic group. Also of note, the formation of a complex between pristine β-CD and (S)-propranolol is the least favorable.
Collapse
Affiliation(s)
- Mohamad Adil Iman Ishak
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
- Centre of Research Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Tan Tiek Aun
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nadiah Sidek
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
- Centre of Research Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Ninie Suhana Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre of Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Liang F, Li X, Zhang Y, Wu Y, Bai K, Agusti R, Soleimani A, Wang W, Yi S. Recent Progress on Green New Phase Extraction and Preparation of Polyphenols in Edible Oil. Molecules 2023; 28:8150. [PMID: 38138638 PMCID: PMC10745615 DOI: 10.3390/molecules28248150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
With the proposal of replacing toxic solvents with non-toxic solvents in the concept of green chemistry, the development and utilization of new green extraction techniques have become a research hotspot. Phenolic compounds in edible oils have good antioxidant activity, but due to their low content and complex matrix, it is difficult to achieve a high extraction rate in a green and efficient way. This paper reviews the current research status of novel extraction materials in solid-phase extraction, including carbon nanotubes, graphene and metal-organic frameworks, as well as the application of green chemical materials in liquid-phase extraction, including deep eutectic solvents, ionic liquids, supercritical fluids and supramolecular solvents. The aim is to provide a more specific reference for realizing the green and efficient extraction of polyphenolic compounds from edible oils, as well as another possibility for the future research trend of green extraction technology.
Collapse
Affiliation(s)
- Feng Liang
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (F.L.); (Y.W.); (K.B.)
| | - Xue Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (Y.Z.)
| | - Yu Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (Y.Z.)
| | - Yi Wu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (F.L.); (Y.W.); (K.B.)
| | - Kaiwen Bai
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (F.L.); (Y.W.); (K.B.)
| | - Romero Agusti
- Institute of Agriculture and Food Research and Technology, Reus, El Morell Road, 43120 Constantí, Spain;
| | - Ali Soleimani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Wei Wang
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (F.L.); (Y.W.); (K.B.)
| | - Shumin Yi
- School of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
4
|
Feuge N, Wilhelm R. Straightforward synthesis of chiral sulfonate-based ionic liquids from amino alcohols for chiral recognition. Chirality 2023; 35:993-1011. [PMID: 37497749 DOI: 10.1002/chir.23614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
New sulfonate-based chiral salts were prepared from amino alcohols and sodium hydroxymethanesulfonate, vinyl sulfonate, or sultone. The synthesis started with different amino acids from the chiral pool and gave the desired products in just four steps. After cation metathesis, the salts were explored as chiral solvating agents (CSAs) in NMR studies. The new chiral ionic liquids (CILs) were successfully able to interact with different chiral guest molecules and formed diastereomeric aggregates. In some cases, baseline separation was observed. The influence of the structural differences in the CIL as well as the structural requirements of the guest molecule is discussed.
Collapse
Affiliation(s)
- Niklas Feuge
- Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| |
Collapse
|
5
|
Zhu B, Qiu H, Ma C, Chen S, Zhu J, Tong S. Recent progress on chiral extractants for enantioselective liquid-liquid extraction. J Chromatogr A 2023; 1709:464389. [PMID: 37741223 DOI: 10.1016/j.chroma.2023.464389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
As the demand for enantiopure compounds increases, chiral separation has become increasingly important in many fields. Enantioselective liquid-liquid extraction is an up-and-coming technology for enantiomeric separation because it is highly efficient and easy to be scaled up. The key factor for enantioselective liquid-liquid extraction is the development of novel chiral extractants with high enantiorecognition performance. With successful studies on catalytically active metal complexes as chiral extractants, novel chiral extractants can be screened and designed from the field of asymmetric catalysis. Chiral ionic liquids, sulfobutylether-β-cyclodextrins bonded magnetic nanoparticles and 2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (SPINOL) based phosphoric acid host show unique potential ability in enantioselective liquid-liquid extraction and they deserve further study. Brief principles, extraction equipment and solvent systems in enantioselective liquid-liquid extraction are presented in the present paper, and recent progress in development of new chiral extractants in the past decade is mainly reviewed, including metal complexes, cyclodextrins, ionic liquids, tartrate acids and crown ethers.
Collapse
Affiliation(s)
- Beibei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China
| | - Chenlei Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China
| | - Songlin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China
| | - Junchao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Moganshan Campus, Gongda Road 1, Huzhou 313200, China.
| |
Collapse
|
6
|
Li HY, Chu YH. Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review. Molecules 2023; 28:6817. [PMID: 37836660 PMCID: PMC10574798 DOI: 10.3390/molecules28196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Ionic liquids (ILs) are a class of low-melting molten salts (<100 °C) constituted entirely of ions, and their research has gained tremendous attention in line with their remarkably growing applications (>124,000 publications dated 30 August 2023 from the Web of ScienceTM). In this review, we first briefly discussed the recent developments and unique characteristics of ILs and zwitterionic liquids (ZILs). Compared to molecular solvents and other conventional organic compounds, (zwitter) ionic liquids carry negligible volatility and are potentially recyclable and reusable. For structures, both ILs and ZILs can be systematically tailor-designed and engineered and are synthetically fine-tunable. As such, ionic liquids, including chiral, supported, task-specific ILs, have been widely used as powerful ionic solvents as well as valuable additives and catalysts for many chemical reactions. Moreover, ILs have demonstrated their value for use as polymerase chain reaction (PCR) enhancers for DNA amplification, chemoselective artificial olfaction for targeted VOC analysis, and recognition-based affinity extraction. As the major focus of this review, we extensively discussed that small-molecule thermoresponsive ILs (TILs) and ZILs (zwitterionic TILs) are new types of smart materials and can be expeditiously discovered through the structure and phase separation (SPS) relationship study by the combinatorial approach. Using this SPS platform developed in our laboratory, we first depicted the rapid discovery of N,N-dialkylcycloammonium and 1,3,4-trialkyl-1,2,3-triazolium TILs that concomitantly exhibited LCST (lower critical solution temperature) phase transition in water and displayed biochemically attractive Tc values. Both smart IL materials were suited for applications to proteins and other biomolecules. Zwitterionic TILs are ZILs whose cations and anions are tethered together covalently and are thermoresponsive to temperature changes. These zwitterionic TIL materials can serve as excellent extraction solvents, through temperature change, for biomolecules such as proteins since they differ from the common TIL problems often associated with unwanted ion exchanges during extractions. These unique structural characteristics of zwitterionic TIL materials greatly reduce and may avoid the denaturation of proteins under physiological conditions. Lastly, we argued that both rational structural design and combinatorial library synthesis of small-molecule TIL materials should take into consideration the important issues of their cytotoxicity and biosafety to the ecosystem, potentially causing harm to the environment and directly endangering human health. Finally, we would concur that before precise prediction and quantitative simulation of TIL structures can be realized, combinatorial chemistry may be the most convenient and effective technology platform to discover TIL expeditiously. Through our rational TIL design and combinatorial library synthesis and screening, we have demonstrated its power to discover novel chemical structures of both TILs and zwitterionic TILs. Undoubtedly, we will continue developing new small-molecule TIL structures and studying their applications related to other thermoresponsive materials.
Collapse
Affiliation(s)
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan;
| |
Collapse
|
7
|
Liu H, Chen J, Chen M, Wang J, Qiu H. Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Anal Chim Acta 2023; 1274:341496. [PMID: 37455089 DOI: 10.1016/j.aca.2023.341496] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Blasius J, Kirchner B. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry 2023; 29:e202301239. [PMID: 37341169 DOI: 10.1002/chem.202301239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| |
Collapse
|
9
|
Ioannou KA, Ioannou GD, Christou A, Stavrou IJ, Schmid MG, Kapnissi-Christodoulou CP. The potential of the use of deep eutectic solvents and amino acid-based ionic liquids to enhance the chiral discrimination ability of different chiral selectors in capillary electrophoresis. J Chromatogr A 2023; 1705:464152. [PMID: 37327715 DOI: 10.1016/j.chroma.2023.464152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The effect of the combined use of amino acid-based ionic liquids (AAILs) and deep eutectic solvents (DESs) with either cyclodextrin- (CD) or cyclofructan- (CF) based chiral selectors for the chiral separation of amphetamine derivatives was investigated in the present study. A non-significant improvement in enantiomeric separation of target analytes was observed when AAILs were combined with either CF or CD. On the other side, a markedly improved chiral separation of enantiomers was obtained using the dual carboxymethyl-β-cyclodextrin/DES system, highlighting the existence of a synergistic effect. After the addition of 0.5% v/v of choline chloride-ethylene glycol, the resolution of the enantiomers of amphetamine, methamphetamine and 3-fluorethamphetamine, increased from 1.4, 1.1, 1.0 to 1.8, 1.8, and 1.5 min, and the analysis times increased from 19.54, 20.48, 18.71 to 35.71, 35.78 and 32.90 min, respectively. This was not the case for the CF/DES dual system, in which the separation of amphetamines worsened, indicating an antagonistic effect. In conclusion, DESs are a very promising additive in capillary electrophoresis that can improve the separation of chiral molecules in combination with CDs but not CFs.
Collapse
Affiliation(s)
| | | | | | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Martin G Schmid
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
10
|
Gano M, Janus E, Schilf W. Chiral Pyrrolidinium Ionic Liquids with (-)-Borneol Fragment in the Cation - Synthesis, Physicochemical Properties and Application in Diels-Alder Reaction. Chemphyschem 2023; 24:e202300251. [PMID: 37278666 DOI: 10.1002/cphc.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
A series of chiral pyrrolidinium salts containing (1 S)-endo-(-)-born-2-yloxymethyl substituent in the structure of the cation and six different anions: chloride, tetrafluoroborate [BF4 ]- , hexafluorophosphate [PF6 ]- , trifluoromethanesulfonate [OTf]- , bis(trifluoromethylsulfonyl)imide [NTf2 ]- , bis(pentafluoroethylsulfonyl)imide [NPf2 ]- and perfluorobutanesulfonate [C4 FS]- were efficiently prepared and extensively characterized. The enantiomeric purity of them was confirmed by NMR analysis with a chemical shift reagent. All salts were characterized with the specific rotation, the solubility in commonly used solvents, thermal properties, including phase transition temperatures and thermal stability. Salts with [PF6 ]- , [C4 FS]- , [NTf2 ]- and [NPf2 ]- anions were classified as chiral ionic liquids (CILs). Moreover, salts with [NTf2 ]- and [NPf2 ]- anions were in the liquid state at room temperature and below. Therefore, density and dynamic viscosity, the surface tension and the contact angle on three different surfaces were also measured for them. Additionally, these chiral ionic liquids were tested as solvents in Diels-Alder reaction.
Collapse
Affiliation(s)
- Marcin Gano
- Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322, Szczecin, Poland
| | - Ewa Janus
- Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322, Szczecin, Poland
| | - Wojciech Schilf
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
11
|
Wang L, Deng XQ, Cai JY, Liang WW, Du YQ, Hu XL. Chronic and intergenerational toxic effects of 1-decyl-3-methylimidazolium hexafluorophosphate on the water flea, Moina macrocopa. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:699-710. [PMID: 37378816 DOI: 10.1007/s10646-023-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
With the increasing use and production of "green solvents" ionic liquids (ILs) and their known stability in the environment, the potential adverse effects of ILs have become a focus of research. In the present study, acute, chronic, and intergenerational toxic effects of an imidazolium-based ionic liquid, 1-decyl-3-methylimidazolium hexafluorophosphate ([Demim]PF6), on Moina macrocopa were investigated following the parental exposure. The results showed that [Demim]PF6 exhibited high toxicity to M. macrocopa, and the long-term exposure significantly inhibited the survivorship, development, and reproduction of the water flea. Furthermore, it is also observed that [Demim]PF6 induced toxic effects in the following generation of M. macrocopa, resulting in the complete cessation of reproduction in the first offspring generation, and the growth of the organisms was also significantly affected. These findings provided a novel insight into the intergenerational toxicity induced by ILs to crustaceans and suggested that these compounds pose potential risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
12
|
Moshikur RM, Carrier RL, Moniruzzaman M, Goto M. Recent Advances in Biocompatible Ionic Liquids in Drug Formulation and Delivery. Pharmaceutics 2023; 15:1179. [PMID: 37111664 PMCID: PMC10145603 DOI: 10.3390/pharmaceutics15041179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective drug formulations and delivery systems for newly developed or marketed drug molecules remains a significant challenge. These drugs can exhibit polymorphic conversion, poor bioavailability, and systemic toxicity, and can be difficult to formulate with traditional organic solvents due to acute toxicity. Ionic liquids (ILs) are recognized as solvents that can improve the pharmacokinetic and pharmacodynamic properties of drugs. ILs can address the operational/functional challenges associated with traditional organic solvents. However, many ILs are non-biodegradable and inherently toxic, which is the most significant challenge in developing IL-based drug formulations and delivery systems. Biocompatible ILs comprising biocompatible cations and anions mainly derived from bio-renewable sources are considered a green alternative to both conventional ILs and organic/inorganic solvents. This review covers the technologies and strategies developed to design biocompatible ILs, focusing on the design of biocompatible IL-based drug formulations and delivery systems, and discusses the advantages of these ILs in pharmaceutical and biomedical applications. Furthermore, this review will provide guidance on transitioning to biocompatible ILs rather than commonly used toxic ILs and organic solvents in fields ranging from chemical synthesis to pharmaceutics.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rebecca L. Carrier
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
14
|
Huang R, Li C, Zhao SG, Liu QT, Liu Y, Xue ZL. Enantioconvergent hydrolysis of racemic 1,2-epoxypentane and 1,2-epoxyhexane by an engineered Escherichia coli strain overexpressing a novel Streptomyces fradiae epoxide hydrolase. Enzyme Microb Technol 2023; 166:110228. [PMID: 36940599 DOI: 10.1016/j.enzmictec.2023.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
In order to excavate microbial epoxide hydrolases (EHs) with desired catalytic properties, a novel EH, SfEH1, was identified based on the genome annotation of Streptomyces fradiae and sequence alignment analysis with local protein library. The SfEH1-encoding gene, sfeh1, was then cloned and over-expressed in soluble form in Escherichia coli/BL21(DE3). The optimal temperature and pH of recombinant SfEH1 (reSfEH1) and reSfEH1-expressing E. coli (E. coli/sfeh1) were both determined as 30 ℃ and 7.0, also indicating that the influences of temperature and pH on reSfEH1's activities were more obvious than those of E. coli/sfeh1 whole cells. Subsequently, using E. coli/sfeh1 as catalyst, its catalytic properties towards thirteen common mono-substituted epoxides were tested, in which E. coli/sfeh1 had the highest activity of 28.5 U/g dry cells for rac-1,2-epoxyoctane (rac-6a), and (R)-1,2-pentanediol ((R)-3b) (or (R)-1,2-hexanediol ((R)-4b)) with up to 92.5% (or 94.1%) eep was obtained at almost 100% conversion ratio. Regioselectivity coefficients (αS and βR) displayed in the enantioconvergent hydrolysis of rac-3a (or rac-4a) were calculated to be 98.7% and 93.8% (or 95.2% and 98.9%). Finally, the reason of the high and complementary regioselectivity was confirmed by both kinetic parameter analysis and molecular docking simulations.
Collapse
Affiliation(s)
- Rui Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Shi-Guang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu 241000, China
| | - Qing-Tao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu 241000, China
| | - Zheng-Lian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
15
|
Recent applications and chiral separation developments based on stationary phases in open tubular capillary electrochromatography (2019–2022). J Pharm Anal 2023; 13:323-339. [PMID: 37181297 PMCID: PMC10173184 DOI: 10.1016/j.jpha.2023.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Capillary electrochromatography (CEC) plays a significant role in chiral separation via the double separation principle, partition coefficient difference between the two phases, and electroosmotic flow-driven separation. Given the distinct properties of the inner wall stationary phase (SP), the separation ability of each SP differs from one another. Particularly, it provides large room for promising applications of open tubular capillary electrochromatography (OT-CEC). We divided the OT-CEC SPs developed over the past four years into six types: ionic liquids, nanoparticle materials, microporous materials, biomaterials, non-nanopolymers, and others, to mainly introduce their characteristics in chiral drug separation. There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP. Additionally, we discuss their applications in metabolomics, food, cosmetics, environment, and biology as analytes in addition to chiral drugs. OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis (CE) combined with other instruments in recent years, such as CE with mass spectrometry (CE/MS) and CE with ultraviolet light detector (CE/UV).
Collapse
|
16
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Quintas PY, Fiorentini EF, Llaver M, González RE, Wuilloud RG. State-of-the-art extraction and separation of enantiomers through the application of alternative solvents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
González-Martín R, Lodoso-Ruiz E, Trujillo-Rodríguez MJ, Pino V. Magnetic Ionic Liquids in Analytical Microextraction: A Tutorial Review. J Chromatogr A 2022; 1685:463577. [DOI: 10.1016/j.chroma.2022.463577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/27/2022]
|
19
|
The influence of the addition of sodium dodecyl sulfonate to sodium caprylate on the corrosion inhibition of carbon steel in aqueous HCl. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Khachatrian AA, Solomonov BN. The comparative analysis of solvation thermochemistry of organic non-electrolytes in ionic liquids and molecular solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
21
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni–Cd Batteries Using Adogen® 464 and Mesoporous Silica Derivatives. Int J Mol Sci 2022; 23:ijms23158677. [PMID: 35955812 PMCID: PMC9368978 DOI: 10.3390/ijms23158677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spent Ni–Cd batteries are now considered an important source for many valuable metals. The recovery of cadmium, cobalt, and nickel from spent Ni–Cd Batteries has been performed in this study. The optimum leaching process was achieved using 20% H2SO4, solid/liquid (S/L) 1/5 at 80 °C for 6 h. The leaching efficiency of Fe, Cd, and Co was nearly 100%, whereas the leaching efficiency of Ni was 95%. The recovery of the concerned elements was attained using successive different separation techniques. Cd(II) ions were extracted by a solvent, namely, Adogen® 464, and precipitated as CdS with 0.5% Na2S solution at pH of 1.25 and room temperature. The extraction process corresponded to pseudo-2nd-order. The prepared PTU-MS silica was applied for adsorption of Co(II) ions from aqueous solution, while the desorption process was performed using 0.3 M H2SO4. Cobalt was precipitated at pH 9.0 as Co(OH)2 using NH4OH. The kinetic and thermodynamic parameters were also investigated. Nickel was directly precipitated at pH 8.25 using a 10% NaOH solution at ambient temperature. FTIR, SEM, and EDX confirm the structure of the products.
Collapse
|
23
|
Kimaru IW, Maltese L. Synthesis and Characterization of a Glycine‐L‐Histidine‐Based Chiral Ionic Liquid and Enantioselectivity Evaluation by Fluorescence Spectroscopy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Irene W. Kimaru
- Department of Chemistry Saint John Fisher College 3690 East Avenue Rochester NY 14618 USA
| | - Leanne Maltese
- Department of Chemistry Saint John Fisher College 3690 East Avenue Rochester NY 14618 USA
| |
Collapse
|
24
|
Salido-Fortuna S, Fernández-Bachiller MI, Marina ML, Castro-Puyana M. Synthesis and characterization of carnitine-based ionic liquids and their evaluation as additives in cyclodextrin-electrokinetic chromatography for the chiral separation of thiol amino acids. J Chromatogr A 2022; 1670:462955. [DOI: 10.1016/j.chroma.2022.462955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
25
|
Zare A, Kohzadian A, Filian H, Nezhad MSG, Karami A. [Et3N-SO3H][MeSO3] as a highly efficient catalyst for the production of pyrido[2,3-d:6,5-d′]dipyrimidines and bis(pyrazolyl)methanes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts 2022. [DOI: 10.3390/catal12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Structure, and consequently properties, of ionic liquids can be easily tailored by changing cation/anion combinations and/or attaching functional groups. By grafting enantiopure moieties to the framework of ionic liquid it is possible to prepare bioinspired chiral molecules that can serve as a reaction medium, additive or even asymmetric catalyst. In this context, new chiral ionic liquids (CILs), based on biomolecules, such as aminoacids (l-Cysteine derivatives), have been synthesised and tested in asymmetric aldol condensation of aldehydes and ketones. The best results were obtained for CILs composed of S-methyl-l-cysteine cation and bis(trifluoromethane)sulfonimide anion, in the reaction of 2- or 4-nitrobenzaldehyde with acetone or cyclohexanone, giving the aldol product in moderate yields 70–76% and high ee values (up to 96%).
Collapse
|
27
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
29
|
Song F, Xiao Y, An S, Wan R, Xu Y, Peng C, Liu H. Prediction of Infinite Dilution Molar Conductivity for Unconventional Ions: A Quantitative Structure–Property Relationship Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fan Song
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Xiao
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhao An
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ren Wan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingjie Xu
- Department of Chemistry, Shaoxing University, Shaoxing 312000, China
| | - Changjun Peng
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Alrebh A, Rammal MB, Omanovic S. A pyridine derivative 2-(2-Methylaminoethyl)pyridine (MAEP) as a ‘green’ corrosion inhibitor for low-carbon steel in hydrochloric acid media. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules 2021; 26:molecules26144190. [PMID: 34299464 PMCID: PMC8303523 DOI: 10.3390/molecules26144190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Chiral imidazolium l-prolinate salts, providing a complex network of supramolecular interaction in a chiral environment, have been studied as synzymatic catalytic systems. They are demonstrated to be green and efficient chiral organocatalysts for direct asymmetric aldol reactions at room temperature. The corresponding aldol products were obtained with moderate to good enantioselectivities. The influence of the presence of chirality in both the imidazolium cation and the prolinate anion on the transfer of chirality from the organocatalyst to the aldol product has been studied. Moreover, interesting match/mismatch situations have been observed regarding configuration of chirality of the two components through the analysis of results for organocatalysts derived from both enantiomers of prolinate (R/S) and the trans/cis isomers for the chiral fragment of the cation. This is associated with differences in the corresponding reaction rates but also to the different tendencies for the formation of aggregates, as evidenced by nonlinear effects studies (NLE). Excellent activities, selectivities, and enantioselectivities could be achieved by an appropriate selection of the structural elements at the cation and anion.
Collapse
|
32
|
Effects of amino acid-derived chiral ionic liquids on cyclodextrin-mediated capillary electrophoresis enantioseparations of dipeptides. J Chromatogr A 2021; 1652:462342. [PMID: 34174715 DOI: 10.1016/j.chroma.2021.462342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The synergistic effect of chiral ionic liquids composed of tetraalkylammonium ions and the amino acids Asn, Asp or Pro on the enantioseparations of dipeptides mediated by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin in capillary electrophoresis was studied. Addition of a chiral ionic liquid resulted in a concentration-dependent increase in the enantioresolutions compared to the sole presence of a cyclodextrin in the background electrolyte. The extent varied with the tetraalkylammonium cation (tetramethylammonium versus tetrabutylammonium) as well as the amino acid component of the ionic liquid. The presence of a chiral ionic liquid did not counteract the pH-dependent reversal of the enantiomer migration order of the dipeptides Ala-Phe, Ala-Tyr and Phe-Phe when increasing the pH of the background electrolyte from 2.5 to 3.5. Comparing the effect of a chiral ionic liquid based on Asp with the addition of equimolar concentrations of the individual components of the ionic liquid, a diverse picture was observed. In some cases, higher resolution values were obtained with the chiral ionic liquid, while for other cases superior enantioseparations were obtained upon separate addition of the amino acid component and a tetraalkylammonium chloride. With regard to the stereochemistry of the amino acid, a superior effect was typically observed using the l-configured amino acid, but in some cases higher resolution values were found in the presence of d-Asp. The rationale for the diverse observations is not obvious and may be due to the zwitterionic nature of analytes as well as the amino acid component of the chiral ionic liquid.
Collapse
|
33
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
34
|
Woo JH, Kim HS, Park NH, Suk HY. Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity. J Microbiol 2021; 59:675-680. [PMID: 34061338 DOI: 10.1007/s12275-021-1023-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)-SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a whole-cell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.
Collapse
Affiliation(s)
- Jung-Hee Woo
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea.
| | - Hae-Seon Kim
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea
| | - Nyun-Ho Park
- Marine Industry Research institute for East Sea Rim (MIRE), Uljin, 36315, Republic of Korea
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
35
|
Thermal Stability and Decomposition Kinetics of 1-Alkyl-2,3-Dimethylimidazolium Nitrate Ionic Liquids: TGA and DFT Study. MATERIALS 2021; 14:ma14102560. [PMID: 34069267 PMCID: PMC8155988 DOI: 10.3390/ma14102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022]
Abstract
The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.
Collapse
|
36
|
Optimization for Liquid-Liquid Extraction of Cd(II) over Cu(II) Ions from Aqueous Solutions Using Ionic Liquid Aliquat 336 with Tributyl Phosphate. Int J Mol Sci 2020; 21:ijms21186860. [PMID: 32962106 PMCID: PMC7555768 DOI: 10.3390/ijms21186860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
This study investigates the separation of two heavy metals, Cd(II) and Cu(II), from the mixed synthetic feed using a liquid-liquid extraction. The current study uses tri-octyl methylammonium chloride (Aliquat 336) as the extractant (with tributyl phosphate (TBP) as a phase modifier), diluted in toluene, in order to investigate the selective extraction of Cd(II) over Cu(II) ions. We investigate the use of ethylenediaminetetraacetic acid (EDTA) as a masking agent for Cu(II), when added in aqueous feed, for the selective extraction of Cd(II). Five factors that influence the selective extraction of Cd(II) over Cu(II) (the equilibrium pH (pHeq), Aliquat 336 concentration (Aliquat 336), TBP concentration (TBP), EDTA concentration (EDTA), and organic to aqueous ratio (O:A)) were analyzed. Results from a 25–1 fractional factorial design show that Aliquat 336 significantly influenced Cd(II) extraction, whereas EDTA was statistically significant for the antagonistic effect on the E% of Cu(II) in the same system. Moreover, results from optimization experiment showed that the optimum conditions are Aliquat 336 concentration of 99.64 mM and EDTA concentration of 48.86 mM—where 95.89% of Cd(II) was extracted with the least extracted Cu(II) of 0.59%. A second-order model was fitted for optimization of Cd(II) extraction with a R2 value of 0.998, and ANOVA results revealed that the model adequately fitted the data at a 5% significance level. Interaction between Aliquat 336 and Cd(II) has been proven via FTIR qualitative analysis, whereas the addition of TBP does not affect the extraction mechanism.
Collapse
|
37
|
Flieger J, Flieger M. Ionic Liquids Toxicity-Benefits and Threats. Int J Mol Sci 2020; 21:E6267. [PMID: 32872533 PMCID: PMC7504185 DOI: 10.3390/ijms21176267] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Michał Flieger
- Medical University of Lublin, Faculty of Medicine, Aleje Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
38
|
Mochida T, Sumitani R, Yamazoe T. Thermal properties, crystal structures, and phase diagrams of ionic plastic crystals and ionic liquids containing a chiral cationic sandwich complex. Phys Chem Chem Phys 2020; 22:25803-25810. [DOI: 10.1039/d0cp04870d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salts of a chiral ruthenium sandwich complex with various anions were synthesized and their phase diagrams were investigated.
Collapse
Affiliation(s)
- Tomoyuki Mochida
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| | - Ryo Sumitani
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| | - Tomoaki Yamazoe
- Department of Chemistry
- Graduate School of Science
- Kobe University
- Hyogo 657-8501
- Japan
| |
Collapse
|