1
|
Xu F, Shi J. Insulin signaling and oxidative stress: Bridging the gap between type 2 diabetes mellitus and Alzheimer's disease. J Alzheimers Dis 2025:13872877241307404. [PMID: 39791373 DOI: 10.1177/13872877241307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) are two prevalent chronic diseases that pose significant global health challenges. Increasing evidence suggests a complex bidirectional relationship between these conditions, where T2D elevates the risk of AD, and AD exacerbates glucose metabolism abnormalities in T2D. OBJECTIVE This review explores the molecular mechanisms linking T2D and AD, focusing on the role of insulin signaling pathways and oxidative stress. METHODS A comprehensive literature search from PubMed, Web of Science, and other relevant databases was conducted and analyzed. RESULTS Insulin resistance in T2D leads to impaired insulin signaling in the brain, contributing to cognitive decline and the development of AD. Hyperglycemia-induced oxidative stress exacerbates neuronal damage, promoting the formation of amyloid-β plaques and neurofibrillary tangles characteristic of AD. Clinically antidiabetic drugs such as metformin show potential against AD in preclinical studies; Many natural products such as Dendrobium nobile Lindl. have anti-T2D efficacy and are also effective against AD in various in vivo and in vitro models. CONCLUSIONS Improving insulin resistance and reducing oxidative stress are important strategies in the treatment of T2D and AD. To understand the bridging role of insulin singling and oxidative stress in T2D and AD will provide insights and broader applications in alleviating T2D and AD.
Collapse
Affiliation(s)
- Fengqing Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, in School of Pharmacy, Zunyi Medical University, Zunyi, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, in School of Pharmacy, Zunyi Medical University, Zunyi, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
3
|
Selvakumar SC, Preethi KA, Thomas P, Ameya KP, Sekar D. Non-Coding RNAs and Diet. EPIGENETICS AND HUMAN HEALTH 2024:31-48. [DOI: 10.1007/978-3-031-54215-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wang Y, Wang J, Gruninger RJ, McAllister TA, Li M, Guan LL. Assessment of different enrichment methods revealed the optimal approach to identify bovine circRnas. RNA Biol 2024; 21:1-13. [PMID: 38797889 PMCID: PMC11135877 DOI: 10.1080/15476286.2024.2356334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Although circular RNAs (circRNAs) play important roles in regulating gene expression, the understanding of circRNAs in livestock animals is scarce due to the significant challenge to characterize them from a biological sample. In this study, we assessed the outcomes of bovine circRNA identification using six enrichment approaches with the combination of ribosomal RNAs removal (Ribo); linear RNAs degradation (R); linear RNAs and RNAs with structured 3' ends degradation (RTP); ribosomal RNAs coupled with linear RNAs elimination (Ribo-R); ribosomal RNA, linear RNAs and RNAs with poly (A) tailing elimination (Ribo-RP); and ribosomal RNA, linear RNAs and RNAs with structured 3' ends elimination (Ribo-RTP), respectively. RNA-sequencing analysis revealed that different approaches led to varied ratio of uniquely mapped reads, false-positive rate of identifying circRNAs, and the number of circRNAs per million clean reads (Padj <0.05). Out of 2,285 and 2,939 highly confident circRNAs identified in liver and rumen tissues, respectively, 308 and 260 were commonly identified from five methods, with Ribo-RTP method identified the highest number of circRNAs. Besides, 507 of 4,051 identified bovine highly confident circRNAs had shared splicing sites with human circRNAs. The findings from this work provide optimized methods to identify bovine circRNAs from cattle tissues for downstream research of their biological roles in cattle.
Collapse
Affiliation(s)
- Yixin Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jian Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Singh M, Guru A, Murugan R, Gopi M, Arockiaraj J. Circular RNA ciRS-7 signature as a potential biomarker for the early detection of diabetes with Alzheimer's disease: a hypothesis. Mol Biol Rep 2023; 50:8705-8714. [PMID: 37620738 DOI: 10.1007/s11033-023-08729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
In the 1970s, Circular RNAs (CircRNAs) were first discovered in RNA viruses as viroids and were initially assumed to be RNA splicing defects. The roles and topologies of these circular RNA loops were later revealed using computer analysis and RNA-sequencing. They were found to demonstrate various functions, including protein scaffolding, parental gene regulation, microRNA sponges, and RNA-protein interactions. CircRNAs play a crucial role in controlling gene expression and are essential for biological development and illness detection, as demonstrated by their roles as miRNA sponges, endogenous RNAs, and potential biomarkers. Insulin resistance is caused by damage to β-cells in the pancreatic islets, which reduces the body's response to the hormone insulin. This reduction in insulin response hinders glucose from entering cells and providing energy for critical processes. As a result, insulin-resistant cells elevate blood sugar levels, leading to diabetes. Diabetes, in turn, increases the risk of heart disease and stroke, which can damage the heart and arteries. Additionally, an excess of insulin can impact the brain's chemical balance, contributing to the development of Alzheimer's disease. Furthermore, oxidative stress created by damaged pancreatic cells during high blood sugar conditions may lead to the destruction of brain cells and the onset of Alzheimer's disease. The hypothesis of this review is to provide an overview of the most dominant ciRS-7 circRNA identified in pancreatic islet cell dysfunction and neurologic disorders, such as Alzheimer's disease. By considering ciRS-7 circRNA as a potential biomarker for diabetes, early detection and treatment of diabetes may be facilitated, potentially reducing the risk of Alzheimer's disease onset in the future.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600 077, India.
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Muthukaruppan Gopi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
7
|
Sinha T, Mishra SS, Singh S, Panda AC. PanCircBase: An online resource for the exploration of circular RNAs in pancreatic islets. Front Cell Dev Biol 2022; 10:942762. [PMID: 36060809 PMCID: PMC9437246 DOI: 10.3389/fcell.2022.942762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of covalently closed RNA molecules that recently emerged as a critical regulator of gene expression in development and diseases. Recent research has highlighted the importance of novel circRNAs in the biosynthesis and secretion of insulin from β-cells of pancreatic islets. However, all circRNAs expressed in pancreatic islets or β-cells are not readily available in the database. In this study, we analyzed publicly available RNA-sequencing datasets of the pancreatic islets to catalog all circRNAs expressed in pancreatic islets to construct the PanCircBase (https://www.pancircbase.net/) database that provides the following resources: 1) pancreatic islet circRNA annotation details (genomic position, host gene, exon information, splice length, sequence, other database IDs, cross-species conservation), 2) divergent primers for PCR analysis of circRNAs, 3) siRNAs for silencing of target circRNAs, 4) miRNAs associated with circRNAs, 5) possible protein-coding circRNAs and their polypeptides. In summary, this is a comprehensive online resource for exploring circRNA expression and its possible function in pancreatic β-cells.
Collapse
Affiliation(s)
- Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Center for Biotechnology, Faridabad, India
| | | | - Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Center for Biotechnology, Faridabad, India
| | | |
Collapse
|
8
|
Robic A, Cerutti C, Demars J, Kühn C. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194815. [PMID: 35513260 DOI: 10.1016/j.bbagrm.2022.194815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Circular intronic RNAs (ciRNAs) are still unexplored regarding mechanisms for their emergence. We considered the ATXN2L intron lariat-derived circular RNA (ciRNA-ATXN2L) as an opportunity to conduct a cross-species examination of ciRNA genesis. To this end, we investigated 207 datasets from 4 tissues and from 13 mammalian species. While in eight species, ciRNA-ATXN2L was never detected, in pigs and rabbits, ciRNA-ATXN2L was expressed in all tissues and sometimes at very high levels. Bovine tissues were an intermediate case and in macaques and cats, only ciRNA-ATXN2L traces were detected. The pattern of ciRNA-ATXN2L restricted to only five species is not related to a particular evolution of intronic sequences. To empower our analysis, we considered 221 additional introns including 80 introns where a lariat-derived ciRNA was previously described. The primary driver of micro-ciRNA genesis (< 155 nt as ciRNA-ATXN2L) appears to be the absence of a canonical "A" (i.e. a "tnA" located in the usual branching region) to build the lariat around this adenosine. The balance between available "non canonical-A" (no ciRNA genesis) and "non-A" (ciRNA genesis) for use as a branch point to build the lariat could modify the expression level of ciRNA-ATXN2L. In addition, the rare localization of the 2'-5' bond in an open RNA secondary structure could also negatively affect the lifetime of ciRNAs (macaque ciRNA-ATXN2L). Our analyses suggest that ciRNA-ATXN2L is likely a functionless splice remnant. This study provides a better understanding of the ciRNAs origin, especially drivers for micro ciRNA genesis.
Collapse
Affiliation(s)
- Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Chloé Cerutti
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France.
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
9
|
Das A, Sinha T, Shyamal S, Panda AC. Emerging Role of Circular RNA-Protein Interactions. Noncoding RNA 2021; 7:48. [PMID: 34449657 PMCID: PMC8395946 DOI: 10.3390/ncrna7030048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology.
Collapse
Affiliation(s)
- Arundhati Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| | - Sharmishtha Shyamal
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| | - Amaresh Chandra Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| |
Collapse
|
10
|
Robic A, Cerutti C, Kühn C, Faraut T. Comparative Analysis of the Circular Transcriptome in Muscle, Liver, and Testis in Three Livestock Species. Front Genet 2021; 12:665153. [PMID: 34040640 PMCID: PMC8141914 DOI: 10.3389/fgene.2021.665153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs have been observed in a large number of species and tissues and are now recognized as a clear component of the transcriptome. Our study takes advantage of functional datasets produced within the FAANG consortium to investigate the pervasiveness of circular RNA transcription in farm animals. We describe here the circular transcriptional landscape in pig, sheep and bovine testicular, muscular and liver tissues using total 66 RNA-seq datasets. After an exhaustive detection of circular RNAs, we propose an annotation of exonic, intronic and sub-exonic circRNAs and comparative analyses of circRNA content to evaluate the variability between individuals, tissues and species. Despite technical bias due to the various origins of the datasets, we were able to characterize some features (i) (ruminant) liver contains more exonic circRNAs than muscle (ii) in testis, the number of exonic circRNAs seems associated with the sexual maturity of the animal. (iii) a particular class of circRNAs, sub-exonic circRNAs, are produced by a large variety of multi-exonic genes (protein-coding genes, long non-coding RNAs and pseudogenes) and mono-exonic genes (protein-coding genes from mitochondrial genome and small non-coding genes). Moreover, for multi-exonic genes there seems to be a relationship between the sub-exonic circRNAs transcription level and the linear transcription level. Finally, sub-exonic circRNAs produced by mono-exonic genes (mitochondrial protein-coding genes, ribozyme, and sno) exhibit a particular behavior. Caution has to be taken regarding the interpretation of the unannotated circRNA proportion in a given tissue/species: clusters of circRNAs without annotation were characterized in genomic regions with annotation and/or assembly problems of the respective animal genomes. This study highlights the importance of improving genome annotation to better consider candidate circRNAs and to better understand the circular transcriptome. Furthermore, it emphasizes the need for considering the relative “weight” of circRNAs/parent genes for comparative analyses of several circular transcriptomes. Although there are points of agreement in the circular transcriptome of the same tissue in two species, it will be not possible to do without the characterization of it in both species.
Collapse
Affiliation(s)
- Annie Robic
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Chloé Cerutti
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Christa Kühn
- Institute Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Thomas Faraut
- INRAE, ENVT, GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
11
|
Sun H, Wu Z, Liu M, Yu L, Li J, Zhang J, Ding X, Jin H. CircRNA May Not Be "Circular". Front Genet 2021; 12:633750. [PMID: 33679895 PMCID: PMC7934283 DOI: 10.3389/fgene.2021.633750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNA (circRNA) is a novel regulatory non-coding RNA and participates in diverse physiological and pathological processes. However, the structures and molecular mechanisms of circRNAs remain unclear. In this study, taking advantage of openly databases and bioinformatics analysis, we observed lots of internal complementary base-pairing sequences (ICBPS) existed in plenty of circRNAs, especially in extremely long circRNAs (el-circRNAs, > 5,000 nt). The result indicated that circRNA may not be a simple circular structure. In addition, we put forward the hypothesis of “open-close effect” in the transition for specific circRNA from normal state to morbid state. Taken together, our results not only expand the knowledge of circRNAs, but also highlight the potential molecular mechanism of circRNAs.
Collapse
Affiliation(s)
- Handong Sun
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijuan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Ming Liu
- Guangzhou Geneseed Biotech Co., Ltd., Guangzhou, China
| | - Liang Yu
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jinwen Zhang
- Guangzhou Geneseed Biotech Co., Ltd., Guangzhou, China
| | - Xiangming Ding
- Department of Bioinformatics, ATCGene Inc., Guangzhou, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| |
Collapse
|
12
|
Brozzi F, Regazzi R. Circular RNAs as Novel Regulators of β-Cell Functions under Physiological and Pathological Conditions. Int J Mol Sci 2021; 22:ijms22041503. [PMID: 33546109 PMCID: PMC7913224 DOI: 10.3390/ijms22041503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) constitute a large class of non-coding RNAs characterized by a covalently closed circular structure. They originate during mRNA maturation through a modification of the splicing process and, according to the included sequences, are classified as Exonic, Intronic, or Exonic-Intronic. CircRNAs can act by sequestering microRNAs, by regulating the activity of specific proteins, and/or by being translated in functional peptides. There is emerging evidence indicating that dysregulation of circRNA expression is associated with pathological conditions, including cancer, neurological disorders, cardiovascular diseases, and diabetes. The aim of this review is to provide a comprehensive and updated view of the most abundant circRNAs expressed in pancreatic islet cells, some of which originating from key genes controlling the differentiation and the activity of insulin-secreting cells or from diabetes susceptibility genes. We will particularly focus on the role of a group of circRNAs that contribute to the regulation of β-cell functions and that display altered expression in the islets of rodent diabetes models and of type 2 diabetic patients. We will also provide an outlook of the unanswered questions regarding circRNA biology and discuss the potential role of circRNAs as biomarkers for β-cell demise and diabetes development.
Collapse
Affiliation(s)
- Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
- Correspondence: ; Tel.: +41-21-692-52-80 or +41-21-692-52-55
| |
Collapse
|
13
|
Beyond Back Splicing, a Still Poorly Explored World: Non-Canonical Circular RNAs. Genes (Basel) 2020; 11:genes11091111. [PMID: 32972011 PMCID: PMC7565381 DOI: 10.3390/genes11091111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the circRNAs reported to date originate from back splicing of a pre-mRNA, and these exonic circRNAs are termed canonical circRNAs. Our objective was to provide an overview of all other (non-canonical) circRNAs that do not originate from the junction of two exons and to characterize their common properties. Those generated through a failure of intron lariat debranching are the best known, even though studies on them are rare. These circRNAs retain the 2′–5′ bond derived from the intron lariat, and this feature probably explains the difficulties in obtaining efficient reverse transcription through the circular junction. Here, we provide an unprecedented overview of non-canonical circRNAs (lariat-derived intronic circRNAs, sub-exonic circRNAs, intron circles, tricRNAs), which all derive from non-coding sequences. As there are few data suggesting their involvement in cellular regulatory processes, we believe that it is early to propose a general function for circRNAs, even for lariat-derived circRNAs. We suggest that their small size and probably strong secondary structures could be major obstacles to their reliable detection. Nevertheless, we believe there are still several possible ways to advance our knowledge of this class of non-coding RNA.
Collapse
|