1
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Messaoudi H, Levesque T, Perzo N, Berg E, Feugray G, Dumesnil A, Brunel V, Guerrot D, Eltchaninoff H, Richard V, Kamel S, Durand E, Bennis Y, Bellien J. Subtotal Nephrectomy Associated with a High-Phosphate Diet in Rats Mimics the Development of Calcified Aortic Valve Disease Associated with Chronic Renal Failure. J Clin Med 2023; 12:jcm12041539. [PMID: 36836075 PMCID: PMC9963294 DOI: 10.3390/jcm12041539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction. This study addressed the hypothesis that subtotal nephrectomy associated with a high-phosphorus diet (5/6Nx + P) in rats represents a suitable animal model to mimic the cardiovascular consequences of chronic kidney disease (CKD) including calcified aortic valve disease (CAVD). Indeed, the latter contributes to the high morbidity and mortality of CKD patients and sorely lacks preclinical models for pathophysiological and pharmacological studies. Methods. Renal and cardiovascular function and structure were compared between sham-operated and 5/6 Nx rats + P 10 to 12 weeks after surgery. Results. As expected, 11 weeks after surgery, 5/6Nx + P rats developed CKD as demonstrated by their increase in plasma creatinine and urea nitrogen and decrease in glomerular filtration rate, estimated by using fluorescein-isothiocyanate-labelled sinistrin, anemia, polyuria, and polydipsia compared to sham-operated animals on a normal-phosphorus diet. At the vascular level, 5/6Nx + P rats had an increase in the calcium content of the aorta; a decrease in mesenteric artery dilatation in response to a stepwise increase in flow, illustrating the vascular dysfunction; and an increase in blood pressure. Moreover, immunohistology showed a marked deposition of hydroxyapatite crystals in the aortic valve of 5/6Nx + P rats. Echocardiography demonstrated that this was associated with a decrease in aortic valve cusp separation and an increase in aortic valve mean pressure gradient and in peak aortic valve velocity. Left-ventricular diastolic and systolic dysfunction as well as fibrosis were also present in 5/6Nx + P rats. Conclusion. This study demonstrates that 5/6Nx + P recapitulates the cardiovascular consequences observed in humans with CKD. In particular, the initiation of CAVD was shown, highlighting the interest of this animal model to study the mechanisms involved in the development of aortic stenosis and test new therapeutic strategies at an early stage of the disease.
Collapse
Affiliation(s)
- Hind Messaoudi
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
| | - Thomas Levesque
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Cardiology, CHU Rouen, F-76000 Rouen, France
| | - Nicolas Perzo
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
| | - Elodie Berg
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Thoracic Surgery, CHU Rouen, F-76000 Rouen, France
| | - Guillaume Feugray
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of General Biochemistry, CHU Rouen, F-76000 Rouen, France
| | - Anaïs Dumesnil
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
| | - Valéry Brunel
- Department of General Biochemistry, CHU Rouen, F-76000 Rouen, France
| | - Dominique Guerrot
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Nephrology, CHU Rouen, F-76000 Rouen, France
| | - Hélène Eltchaninoff
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Cardiology, CHU Rouen, F-76000 Rouen, France
| | - Vincent Richard
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Pharmacology, CHU Rouen, F-76000 Rouen, France
| | - Saïd Kamel
- UR UPJV 7517, Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV), Centre de Recherche Universitaire en Santé, Université de Picardie Jules Verne, F-80054 Amiens, France
- Department of Biochemistry, Amiens-Picardie University Hospital, F-80054 Amiens, France
| | - Eric Durand
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Cardiology, CHU Rouen, F-76000 Rouen, France
| | - Youssef Bennis
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- UR UPJV 7517, Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV), Centre de Recherche Universitaire en Santé, Université de Picardie Jules Verne, F-80054 Amiens, France
- Department of Pharmacology, Amiens-Picardie University Hospital, F-80054 Amiens, France
| | - Jérémy Bellien
- INSERM EnVI UMR 1096, University of Rouen Normandie, F-76000 Rouen, France
- Department of Pharmacology, CHU Rouen, F-76000 Rouen, France
- Correspondence: ; Tel.: +33-(0)2-35-14-83-68
| |
Collapse
|
3
|
He W, Huang J, Liu Y, Xie C, Zhang K, Zhu X, Chen J, Huang H. Deletion of soluble epoxide hydrolase suppressed chronic kidney disease-related vascular calcification by restoring Sirtuin 3 expression. Cell Death Dis 2021; 12:992. [PMID: 34689162 PMCID: PMC8542048 DOI: 10.1038/s41419-021-04283-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Vascular calcification is common in chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD) without any effective therapies available up to date. The expression of soluble epoxide hydrolase (sEH) is different in patients with and without vascular calcification. The present study investigates the role of sEH as a potential mediator of vascular calcification in CKD. Both Ephx2−/− and wild-type (WT) mice fed with high adenine and phosphate (AP) diet were used to explore the vascular calcification in CKD. Compared with WT, deletion of sEH inhibited vascular calcification induced by AP. sEH deletion also abolished high phosphorus (Pi)-induced phenotypic transition of vascular smooth muscle cells (VSMCs) independent of its epoxyeicosatrienoic acids (EETs) hydrolysis. Further gene expression analysis identified the potential role of Sirtuin 3 (Sirt3) in the sEH-regulated VSMC calcification. Under high Pi treatment, sEH interacted with Sirt3, which might destabilize Sirt3 and accelerate the degradation of Sirt3. Deletion of sEH may preserve the expression of Sirt3, and thus maintain the mitochondrial adenosine triphosphate (ATP) synthesis and morphology, significantly suppressing VSMC calcification. Our data supported that sEH deletion inhibited vascular calcification and indicated a promising target of sEH inhibition in vascular calcification prevention.
Collapse
Affiliation(s)
- Wanbing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Jieping Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yang Liu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.,Department of Cardiology, The Second Affiliated Hospital, University of South China, 30 Jiefang Road, Hengyang, 421001, China
| | - Changming Xie
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Xinhong Zhu
- Research Center of Brain Health, Pazhou Lab, 70 Anyue Road, Guangzhou, 510330, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.
| |
Collapse
|
4
|
Moser B, Poetsch F, Estepa M, Luong TTD, Pieske B, Lang F, Alesutan I, Voelkl J. Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Arch 2021; 473:1899-1910. [PMID: 34564739 PMCID: PMC8599266 DOI: 10.1007/s00424-021-02621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and β-adrenergic receptors. The present study explored the effects of β2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. β2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of β2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.
Collapse
Affiliation(s)
- Barbara Moser
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, Wang Y. 14,15-EET Reduced Brain Injury from Cerebral Ischemia and Reperfusion via Suppressing Neuronal Parthanatos. Int J Mol Sci 2021; 22:ijms22189660. [PMID: 34575823 PMCID: PMC8471287 DOI: 10.3390/ijms22189660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
To investigate the effect of 14,15-EET on the parthanatos in neurons induced by cerebral ischemia and reperfusion, middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia reperfusion in vivo and in vitro, respectively. TTC staining and the Tunel method were used to detect cerebral infarct volume and neuronal apoptosis. Western blot and immunofluorescence were used to detect poly (ADP-ribose) polymerase-1 (PARP-1) activation and AIF nuclear translocation. The production of reactive oxygen species (ROS) and the expression of antioxidant genes were detected by Mito SOX, DCFH-DA and qPCR methods. MCAO/R increased cerebral infarct volume and neuronal apoptosis in mice, while 14,15-EET pretreatment increased cerebral infarct volume and neuronal apoptosis. OGD/R induced reactive oxygen species generation, PARP-1 cleavage, and AIF nuclear translocation in cortical neurons. 14,15-EET pretreatment could enhance the antioxidant gene expression of glutathione peroxidase (GSH-Px), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in cortical neurons after ischemia and reperfusion. 14,15-EET inhibits the neuronal parthanatos induced by MCAO/R through upregulation of the expression of antioxidant genes and by reducing the generation of reactive oxygen species. This study advances the EET neuroprotection theory and provides a scientific basis for targeted clinical drugs that reduce neuronal parthanatos following cerebral ischemia and reperfusion.
Collapse
Affiliation(s)
- Haipeng Zhao
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Jing Tang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Hongyang Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Wei Gu
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
| | - Lai Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| |
Collapse
|
6
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|