1
|
Jiménez-Padilla Y, Chan Y, Aletta MS, Lachance MA, Simon AF. The effect of microbiome on social spacing in Drosophila melanogaster depends on genetic background and sex. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001270. [PMID: 39381640 PMCID: PMC11461029 DOI: 10.17912/micropub.biology.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiome modulates many essential functions including metabolism, immunity, and behaviour. Specifically, within behaviour, social behaviours such as sociability, aggregation, mating preference, avoidance, oviposition, and aggression are known to be regulated in part by this host-microbiome relationship. Here, we show the microbiome's role in the determination of social spacing in a sex- and genotype-specific manner. Future work can be done on characterizing the microbiome in each of these fly strains to identify the species of microbes present as well as their abundance.
Collapse
Affiliation(s)
| | - Yen Chan
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | - M. Sol Aletta
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | | | - Anne F Simon
- Biology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
4
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
5
|
Li SW, Williams ZM, Báez-Mendoza R. Investigating the Neurobiology of Abnormal Social Behaviors. Front Neural Circuits 2021; 15:769314. [PMID: 34916912 PMCID: PMC8670406 DOI: 10.3389/fncir.2021.769314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- S William Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Liu Y, Shen L, Zhang Y, Zhao R, Liu C, Luo S, Chen J, Xia L, Li T, Peng Y, Xia K. Rare NRXN1 missense variants identified in autism interfered protein degradation and Drosophila sleeping. J Psychiatr Res 2021; 143:113-122. [PMID: 34487988 DOI: 10.1016/j.jpsychires.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
NRXN1 is involved in synaptogenesis and have been implicated in Autism spectrum disorders. However, many rare inherited missense variants of NRXN1 have not been thoroughly evaluated. Here, functional analyses in vitro and in Drosophila of three NRXN1 missense mutations, Y282H, L893V, and I1135V identified in ASD patients in our previous study were performed. Our results showed these three mutations interfered protein degradation compared with NRXN1-WT protein. Expressing human NRXN1 in Drosophila could lead to abnormal circadian rhythm and sleep behavior, and three mutated proteins caused milder phenotypes, indicating the mutations may change the function of NRXN1 slightly. These findings highlight the functional role of rare NRXN1 missense variants identified in autism patients, and provide clues for us to better understand the pathogenesis of abnormal circadian rhythm and sleep behavior of other organisms, including humans.
Collapse
Affiliation(s)
- Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China; Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Yaowen Zhang
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Rongjuan Zhao
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Cenying Liu
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Sanchuan Luo
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Jingjing Chen
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Lu Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Taoxi Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, China; Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Peng
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Key Laboratory of Animal Models for Human Diseases of Hunan Province, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China; CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China; Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Brown SG, Brenman-Suttner DB, McInnes AG, Lew K, Moehring AJ, Bauer JH, Simon AF. Inheritance of pheromone profiles from aged D. melanogaster. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000459. [PMID: 34723148 PMCID: PMC8553430 DOI: 10.17912/micropub.biology.000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Through aging, D. melanogaster males and females change their social spacing. Flies are initially more social, but reduce sociability as they grow older. This preferred social space is inherited in their progeny. Here, we report that in females, the profiles of cuticular hydrocarbons (CHC), which are known to promote social interaction between individuals, similarly are affected by age. Importantly, for a subset of those CHC, the progeny's CHC levels are comparable to those of their parents, suggesting that parental age influences offspring CHC expression. Those data establish a foundation to identify the relationship between CHC levels and social spacing, and to understand the mechanisms of the inheritance of complex traits.
Collapse
Affiliation(s)
- Samuel G Brown
- Department of Chemistry, California State University Sacramento, CA, USA
| | - Dova B Brenman-Suttner
- Current: Department of Biology, York University, Toronto, ON, Canada,
Department of Biology, University of Western Ontario, London, ON, Canada
| | - Abigail G McInnes
- Department of Chemistry, California State University Sacramento, CA, USA
| | - Katlynn Lew
- Department of Chemistry, California State University Sacramento, CA, USA
| | - Amanda J Moehring
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Johannes H Bauer
- Department of Chemistry, California State University Sacramento, CA, USA
| | - Anne F Simon
- Department of Biology, University of Western Ontario, London, ON, Canada,
Correspondence to: Anne F Simon ()
| |
Collapse
|
9
|
Scott AM, Dworkin I, Dukas R. Evolution of sociability by artificial selection. Evolution 2021; 76:541-553. [PMID: 34605553 DOI: 10.1111/evo.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
There has been extensive research on the ecology and evolution of social life in animals that live in groups. Less attention, however, has been devoted to apparently solitary species, even though recent research indicates that they also possess complex social behaviors. To address this knowledge gap, we artificially selected on sociability, defined as the tendency to engage in nonaggressive activities with others, in fruit flies. Our goal was to quantify the factors that determine the level of sociability and the traits correlated with this feature. After 25 generations of selection, the high-sociability lineages showed sociability scores about 50% higher than did the low-sociability lineages. Experiments using the evolved lineages indicated that there were no differences in mating success between flies from the low and high lineages. Both males and females from the low lineages, however, were more aggressive than males and females from the high lineages. Finally, the evolved lineages maintained their sociability scores after 10 generations of relaxed selection, suggesting no costs to maintaining low and high sociability, at least under our settings. Sociability is a complex trait, which we currently assess through genomic work on the evolved lineages.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|