1
|
Hallal SM, Sida LA, Tűzesi Á, Shivalingam B, Sim H, Buckland ME, Satgunaseelan L, Alexander KL. Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70021. [PMID: 39554867 PMCID: PMC11565258 DOI: 10.1002/jex2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is emerging. However, the characteristics and compositions of different uEV subpopulations across normal physiological and pathological states require rigorous explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm membranous nanoparticles) and described putative biomarkers corresponding to the diagnosis, tumour burden and recurrence of the lethal adult primary brain tumour, glioblastoma. Here, we comprehensively characterise uEV populations with significantly different mean and mode particle sizes obtained by differential centrifugation at 100,000 × g (100K-uEVs; smaller) and 17,000 × g (17K-uEVs; larger) using Fourier-transform infrared spectroscopy and quantitative data-independent acquisition mass spectrometry. We show distinct differences in protein and lipid content, prominent protein secondary structures, and proteome distributions between uEV populations that can distinguish glioblastoma patients from healthy controls and correspond to clinically relevant tumour changes (i.e., recurrence and treatment resistance). Among the key findings is a putative seven-protein biomarker panel associated with 17K-uEVs that could distinguish all glioblastoma patients from healthy controls and accurately classify 98.2% of glioblastoma samples. These novel, significant findings demonstrate that both uEV populations offer individual and combined biomarker potential. Further research is warranted to elucidate the complete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV populations.
Collapse
Affiliation(s)
- Susannah M. Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Liam A. Sida
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Ágota Tűzesi
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Brindha Shivalingam
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Neurosurgery DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Hao‐Wen Sim
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
- NHMRC Clinical Trials CentreThe University of SydneyCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of New South WalesKensingtonNSWAustralia
| | - Michael E. Buckland
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Laveniya Satgunaseelan
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
2
|
Sheng B, Gao S, Chen X, Liu Y, Lai N, Dong J, Sun J, Zhou Y, Wu L, Hang CH, Li W. Exosomes-mediated delivery of miR-486-3p alleviates neuroinflammation via SIRT2-mediated inhibition of mitophagy after subarachnoid hemorrhage. Stroke Vasc Neurol 2024:svn-2024-003509. [PMID: 39357894 DOI: 10.1136/svn-2024-003509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Neuroinflammation participates in the pathogenesis of subarachnoid haemorrhage (SAH); however, no effective treatments exist. MicroRNAs regulate several aspects of neuronal dysfunction. In a previous study, we found that exosomal miR-486-3p is involved in the pathophysiology of SAH. Targeted delivery of miR-486-3p without blood-brain barrier (BBB) restriction to alleviate SAH is a promising neuroinflammation approach. METHODS In this study, we modified exosomes (Exo) to form an RVG-miR-486-3p-Exo (Exo/miR) to achieve targeted delivery of miR-486-3p to the brain. Neurological scores, brain water content, BBB damage, flow cytometry and FJC staining were used to determine the effect of miR-486-3p on SAH. Western blot analysis, ELISA and RT-qPCR were used to measure relevant protein and mRNA levels. Immunofluorescence staining and laser confocal detection were used to measure the expression of mitochondria, lysosomes and autophagosomes, and transmission electron microscopy was used to observe the level of mitophagy in the brain tissue of mice after SAH. RESULTS Tail vein injection of Exo/miR improved targeting of miR-486-3p to the brains of SAH mice. The injection reduced levels of neuroinflammation-related factors by changing the phenotype switching of microglia, inhibiting the expression of sirtuin 2 (SIRT2) and enhancing mitophagy. miR-486-3p treatment alleviated neurobehavioral disorders, brain oedema, BBB damage and neurodegeneration. Further research found that the mechanism was achieved by regulating the acetylation level of peroxisome proliferator-activated receptor γ coactivator l alpha (PGC-1α) after SIRT2 enters the nucleus. CONCLUSION Exo/miR treatment attenuates neuroinflammation after SAH by inhibiting SIRT2 expression and stimulating mitophagy, suggesting potential clinical applications.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - XiangXin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Niansheng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jin Dong
- Department of Outpatient, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jiaqing Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
4
|
Dogra N, Chen TY, Gonzalez-Kozlova E, Miceli R, Cordon-Cardo C, Tewari AK, Losic B, Stolovitzky G. Extracellular vesicles carry transcriptional 'dark matter' revealing tissue-specific information. J Extracell Vesicles 2024; 13:e12481. [PMID: 39148266 PMCID: PMC11327273 DOI: 10.1002/jev2.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024] Open
Abstract
From eukaryotes to prokaryotes, all cells secrete extracellular vesicles (EVs) as part of their regular homeostasis, intercellular communication, and cargo disposal. Accumulating evidence suggests that small EVs carry functional small RNAs, potentially serving as extracellular messengers and liquid-biopsy markers. Yet, the complete transcriptomic landscape of EV-associated small RNAs during disease progression is poorly delineated due to critical limitations including the protocols used for sequencing, suboptimal alignment of short reads (20-50 nt), and uncharacterized genome annotations-often denoted as the 'dark matter' of the genome. In this study, we investigate the EV-associated small unannotated RNAs that arise from endogenous genes and are part of the genomic 'dark matter', which may play a key emerging role in regulating gene expression and translational mechanisms. To address this, we created a distinct small RNAseq dataset from human prostate cancer & benign tissues, and EVs derived from blood (pre- & post-prostatectomy), urine, and human prostate carcinoma epithelial cell line. We then developed an unsupervised data-based bioinformatic pipeline that recognizes biologically relevant transcriptional signals irrespective of their genomic annotation. Using this approach, we discovered distinct EV-RNA expression patterns emerging from the un-annotated genomic regions (UGRs) of the transcriptomes associated with tissue-specific phenotypes. We have named these novel EV-associated small RNAs as 'EV-UGRs' or "EV-dark matter". Here, we demonstrate that EV-UGR gene expressions are downregulated by ∼100 fold (FDR < 0.05) in the circulating serum EVs from aggressive prostate cancer subjects. Remarkably, these EV-UGRs expression signatures were regained (upregulated) after radical prostatectomy in the same follow-up patients. Finally, we developed a stem-loop RT-qPCR assay that validated prostate cancer-specific EV-UGRs for selective fluid-based diagnostics. Overall, using an unsupervised data driven approach, we investigate the 'dark matter' of EV-transcriptome and demonstrate that EV-UGRs carry tissue-specific Information that significantly alters pre- and post-prostatectomy in the prostate cancer patients. Although further validation in randomized clinical trials is required, this new class of EV-RNAs hold promise in liquid-biopsy by avoiding highly invasive biopsy procedures in prostate cancer.
Collapse
Affiliation(s)
- Navneet Dogra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tzu-Yi Chen
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Rebecca Miceli
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bojan Losic
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gustavo Stolovitzky
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- DREAM Challenges
| |
Collapse
|
5
|
Cela I, Capone E, Trevisi G, Sala G. Extracellular vesicles in glioblastoma: Biomarkers and therapeutic tools. Semin Cancer Biol 2024; 101:25-43. [PMID: 38754752 DOI: 10.1016/j.semcancer.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive tumor among the gliomas and intracranial tumors and to date prognosis for GBM patients remains poor, with a median survival typically measured in months to a few years depending on various factors. Although standardized therapies are routinely employed, it is clear that these strategies are unable to cope with heterogeneity and invasiveness of GBM. Furthermore, diagnosis and monitoring of responses to therapies are directly dependent on tissue biopsies or magnetic resonance imaging (MRI) techniques. From this point of view, liquid biopsies are arising as key sources of a variety of biomarkers with the advantage of being easily accessible and monitorable. In this context, extracellular vesicles (EVs), physiologically shed into body fluids by virtually all cells, are gaining increasing interest both as natural carriers of biomarkers and as specific signatures even for GBM. What makes these vesicles particularly attractive is they are also emerging as therapeutical vehicles to treat GBM given their native ability to cross the blood-brain barrier (BBB). Here, we reviewed recent advances on the use of EVs as biomarker for liquid biopsy and nanocarriers for targeted delivery of anticancer drugs in glioblastoma.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy; Neurosurgical Unit, Santo Spirito Hospital, Pescara 65121, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
6
|
Indira Chandran V, Gopala S, Venkat EH, Kjolby M, Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol 2024; 8:103. [PMID: 38760427 PMCID: PMC11101656 DOI: 10.1038/s41698-024-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology and Steno Diabetes Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Dong N, Qi W, Wu L, Li J, Zhang X, Wu H, Zhang W, Jiang J, Zhang S, Fu W, Liu Q, Qi G, Wang L, Lu Y, Luo J, Kong Y, Liu Y, Zhao RC, Wang J. LINC00606 promotes glioblastoma progression through sponge miR-486-3p and interaction with ATP11B. J Exp Clin Cancer Res 2024; 43:139. [PMID: 38725030 PMCID: PMC11080186 DOI: 10.1186/s13046-024-03058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Lingling Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xueqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wen Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guandong Qi
- Residential College, Shanghai University, Shanghai, China
| | - Lukai Wang
- Residential College, Shanghai University, Shanghai, China
| | - Yanyuan Lu
- Residential College, Shanghai University, Shanghai, China
| | - Jingyi Luo
- Residential College, Shanghai University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
8
|
Hallal SM, Tűzesi Á, Sida LA, Xian E, Madani D, Muralidharan K, Shivalingam B, Buckland ME, Satgunaseelan L, Alexander KL. Glioblastoma biomarkers in urinary extracellular vesicles reveal the potential for a 'liquid gold' biopsy. Br J Cancer 2024; 130:836-851. [PMID: 38212481 PMCID: PMC10912426 DOI: 10.1038/s41416-023-02548-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Biomarkers that reflect glioblastoma tumour activity and treatment response are urgently needed to help guide clinical management, particularly for recurrent disease. As the urinary system is a major clearance route of circulating extracellular vesicles (EVs; 30-1000 nm nanoparticles) we explored whether sampling urinary-EVs could serve as a simple and non-invasive liquid biopsy approach for measuring glioblastoma-associated biomarkers. METHODS Fifty urine specimens (15-60 ml) were collected from 24 catheterised glioblastoma patients immediately prior to primary (n = 17) and recurrence (n = 7) surgeries, following gross total resection (n = 9), and from age/gender-matched healthy participants (n = 14). EVs isolated by differential ultracentrifugation were characterised and extracted proteomes were analysed by high-resolution data-independent acquisition liquid chromatography tandem mass spectrometry (DIA-LC-MS/MS). RESULTS Overall, 6857 proteins were confidently identified in urinary-EVs (q-value ≤ 0.01), including 94 EV marker proteins. Glioblastoma-specific proteomic signatures were determined, and putative urinary-EV biomarkers corresponding to tumour burden and recurrence were identified (FC ≥ | 2 | , adjust p-val≤0.05, AUC > 0.9). CONCLUSION In-depth DIA-LC-MS/MS characterisation of urinary-EVs substantiates urine as a viable source of glioblastoma biomarkers. The promising 'liquid gold' biomarker panels described here warrant further investigation.
Collapse
Affiliation(s)
- Susannah M Hallal
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Liam A Sida
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elissa Xian
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Daniel Madani
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Krishna Muralidharan
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Brindha Shivalingam
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Neurosurgery Department, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Laveniya Satgunaseelan
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Brain Cancer Research, Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW, Australia.
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
9
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Lunavat TR, Nieland L, Vrijmoet AB, Zargani-Piccardi A, Samaha Y, Breyne K, Breakefield XO. Roles of extracellular vesicles in glioblastoma: foes, friends and informers. Front Oncol 2023; 13:1291177. [PMID: 38074665 PMCID: PMC10704464 DOI: 10.3389/fonc.2023.1291177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GB) tumors are one of the most insidious cancers which take over the brain and defy therapy. Over time and in response to treatment the tumor and the brain cells in the tumor microenvironment (TME) undergo many genetic/epigenetic driven changes in their phenotypes and this is reflected in the cellular contents within the extracellular vesicles (EVs) they produce. With the result that some EVs try to subdue the tumor (friends of the brain), while others participate in the glioblastoma takeover (foes of the brain) in a dynamic and ever changing process. Monitoring the contents of these EVs in biofluids can inform decisions based on GB status to guide therapeutic intervention. This review covers primarily recent research describing the different cell types in the brain, as well as the tumor cells, which participate in this EV deluge. This includes EVs produced by the tumor which manipulate the transcriptome of normal cells in their environment in support of tumor growth (foes), as well as responses of normal cells which try to restrict tumor growth and invasion, including traveling to cervical lymph nodes to present tumor neo-antigens to dendritic cells (DCs). In addition EVs released by tumors into biofluids can report on the status of living tumor cells via their cargo and thus serving as biomarkers. However, EVs released by tumor cells and their influence on normal cells in the tumor microenvironment is a major factor in immune suppression and coercion of normal brain cells to join the GB "band wagon". Efforts are being made to deploy EVs as therapeutic vehicles for drugs and small inhibitory RNAs. Increasing knowledge about EVs in the TME is being utilized to track tumor progression and response to therapy and even to weaponize EVs to fight the tumor.
Collapse
Affiliation(s)
- Taral R. Lunavat
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lisa Nieland
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Neurosurgery, Leiden University Medical Center, Leiden, RC, Netherlands
| | - Anne B. Vrijmoet
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ayrton Zargani-Piccardi
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Youssef Samaha
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
11
|
Khalili N, Shooli H, Hosseini N, Fathi Kazerooni A, Familiar A, Bagheri S, Anderson H, Bagley SJ, Nabavizadeh A. Adding Value to Liquid Biopsy for Brain Tumors: The Role of Imaging. Cancers (Basel) 2023; 15:5198. [PMID: 37958372 PMCID: PMC10650848 DOI: 10.3390/cancers15215198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Clinical management in neuro-oncology has changed to an integrative approach that incorporates molecular profiles alongside histopathology and imaging findings. While the World Health Organization (WHO) guideline recommends the genotyping of informative alterations as a routine clinical practice for central nervous system (CNS) tumors, the acquisition of tumor tissue in the CNS is invasive and not always possible. Liquid biopsy is a non-invasive approach that provides the opportunity to capture the complex molecular heterogeneity of the whole tumor through the detection of circulating tumor biomarkers in body fluids, such as blood or cerebrospinal fluid (CSF). Despite all of the advantages, the low abundance of tumor-derived biomarkers, particularly in CNS tumors, as well as their short half-life has limited the application of liquid biopsy in clinical practice. Thus, it is crucial to identify the factors associated with the presence of these biomarkers and explore possible strategies that can increase the shedding of these tumoral components into biological fluids. In this review, we first describe the clinical applications of liquid biopsy in CNS tumors, including its roles in the early detection of recurrence and monitoring of treatment response. We then discuss the utilization of imaging in identifying the factors that affect the detection of circulating biomarkers as well as how image-guided interventions such as focused ultrasound can help enhance the presence of tumor biomarkers through blood-brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
| | - Hossein Shooli
- Department of Radiology, Bushehr University of Medical Sciences, Bushehr 75146-33196, Iran
| | - Nastaran Hosseini
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| | - Hannah Anderson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| | - Stephen J. Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (N.K.); (A.F.K.); (A.F.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (H.A.)
| |
Collapse
|
12
|
Müller Bark J, Trevisan França de Lima L, Zhang X, Broszczak D, Leo PJ, Jeffree RL, Chua B, Day BW, Punyadeera C. Proteome profiling of salivary small extracellular vesicles in glioblastoma patients. Cancer 2023; 129:2836-2847. [PMID: 37254878 PMCID: PMC10952188 DOI: 10.1002/cncr.34888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) play a critical role in intercellular communication under physiological and pathological conditions, including cancer. EVs cargo reflects their cell of origin, suggesting their utility as biomarkers. EVs are detected in several biofluids, and their ability to cross the blood-brain barrier has highlighted their potential as prognostic and diagnostic biomarkers in gliomas, including glioblastoma (GBM). Studies have demonstrated the potential clinical utility of plasma-derived EVs in glioma. However, little is known about the clinical utility of saliva-derived EVs in GBM. METHODS Small EVs were isolated from whole mouth saliva of GBM patients pre- and postoperatively. Isolation was performed using differential centrifugation and/or ultracentrifugation. EVs were characterized by concentration, size, morphology, and EVs cell-surface protein markers. Protein cargo in EVs was profiled using mass spectrometry. RESULTS There were no statistically significant differences in size and concentration of EVs derived from pre- and post GBM patients' saliva samples. A higher number of proteins were detected in preoperative samples compared to postoperative samples. The authors found four highly abundant proteins (aldolase A, 14-3-3 protein ε, enoyl CoA hydratase 1, and transmembrane protease serine 11B) in preoperative saliva samples from GBM patients with poor outcomes. Functional enrichment analysis of pre- and postoperative saliva samples showed significant enrichment of several pathways, including those related to the immune system, cell cycle and programmed cell death. CONCLUSIONS This study, for the first time, demonstrates the feasibility of isolating and characterizing small EVs from pre- and postoperative saliva samples from GBM patients. Preliminary findings encourage further large cohort validation studies on salivary small EVs to evaluate prognosis in GBM.
Collapse
Affiliation(s)
- Juliana Müller Bark
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Lucas Trevisan França de Lima
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
- Gallipoli Medical Research InstituteGreenslopes Private HospitalBrisbaneQueenslandAustralia
| | - Xi Zhang
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| | - Daniel Broszczak
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Paul J. Leo
- Translational Research InstituteBrisbaneQueenslandAustralia
- Translational Genomics GroupQueensland University of TechnologyTranslational Research InstituteWoolloongabbaQueenslandAustralia
| | - Rosalind L. Jeffree
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Cell and Molecular Biology DepartmentSid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Chamindie Punyadeera
- Centre for Biomedical TechnologiesThe School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute (MHIQ)Griffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
13
|
Aguilar MA, Ebanks S, Markus H, Lewis MM, Midya V, Vrana K, Huang X, Hall MA, Kawasawa YI. Neuronally enriched microvesicle RNAs are differentially expressed in the serums of Parkinson's patients. Front Neurosci 2023; 17:1145923. [PMID: 37483339 PMCID: PMC10357515 DOI: 10.3389/fnins.2023.1145923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background Circulating small RNAs (smRNAs) originate from diverse tissues and organs. Previous studies investigating smRNAs as potential biomarkers for Parkinson's disease (PD) have yielded inconsistent results. We investigated whether smRNA profiles from neuronally-enriched serum exosomes and microvesicles are altered in PD patients and discriminate PD subjects from controls. Methods Demographic, clinical, and serum samples were obtained from 60 PD subjects and 40 age- and sex-matched controls. Exosomes and microvesicles were extracted and isolated using a validated neuronal membrane marker (CD171). Sequencing and bioinformatics analyses were used to identify differentially expressed smRNAs in PD and control samples. SmRNAs also were tested for association with clinical metrics. Logistic regression and random forest classification models evaluated the discriminative value of the smRNAs. Results In serum CD171 enriched exosomes and microvesicles, a panel of 29 smRNAs was expressed differentially between PD and controls (false discovery rate (FDR) < 0.05). Among the smRNAs, 23 were upregulated and 6 were downregulated in PD patients. Pathway analysis revealed links to cellular proliferation regulation and signaling. Least absolute shrinkage and selection operator adjusted for the multicollinearity of these smRNAs and association tests to clinical parameters via linear regression did not yield significant results. Univariate logistic regression models showed that four smRNAs achieved an AUC ≥ 0.74 to discriminate PD subjects from controls. The random forest model had an AUC of 0.942 for the 29 smRNA panel. Conclusion CD171-enriched exosomes and microvesicles contain the differential expression of smRNAs between PD and controls. Future studies are warranted to follow up on the findings and understand the scientific and clinical relevance.
Collapse
Affiliation(s)
- Morris A. Aguilar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Shauna Ebanks
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Havell Markus
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Mechelle M. Lewis
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kent Vrana
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Xuemei Huang
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Molly A. Hall
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Institute for Personalized Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
14
|
Cumba Garcia LM, Bouchal SM, Bauman MMJ, Parney IF. Advancements and Technical Considerations for Extracellular Vesicle Isolation and Biomarker Identification in Glioblastoma. Neurosurgery 2023; 93:33-42. [PMID: 36749103 DOI: 10.1227/neu.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by all cells. Previous research has found that these microscopic vesicles contribute to intercellular signaling and communication. EVs carry a variety of cargo, including nucleic acids, proteins, metabolites, and lipids. The composition of EVs varies based on cell of origin. Therefore, EVs can serve as an important biomarker in the diagnosis and treatment of various cancers. EVs derived from glioblastoma (GBM) cells carry biomarkers, which could serve as the basis for a potential diagnostic strategy known as liquid biopsy. Multiple EV isolation techniques exist, including ultrafiltration, size exclusion chromatography, flow field-flow fractionation, sequential filtration, differential ultracentrifugation, and density-gradient ultracentrifugation. Recent and ongoing work aims to identify cellular markers to distinguish GBM-derived EVs from those released by noncancerous cells. Strategies include proteomic analysis of GBM EVs, identification of GBM-specific metabolites, and use of Food and Drug Administration-approved 5-aminolevulinic acid-an oral agent that causes fluorescence of GBM cells-to recognize GBM EVs in a patient's blood. In addition, accurately and precisely monitoring changes in EV cargo concentrations could help differentiate between pseudoprogression and GBM recurrence, thus preventing unnecessary surgical interventions.
Collapse
Affiliation(s)
- Luz M Cumba Garcia
- Department of Immunology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Samantha M Bouchal
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M J Bauman
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Wang J, Chen HC, Sheng Q, Dawson TR, Coffey RJ, Patton JG, Weaver AM, Shyr Y, Liu Q. Systematic Assessment of Small RNA Profiling in Human Extracellular Vesicles. Cancers (Basel) 2023; 15:3446. [PMID: 37444556 PMCID: PMC10340377 DOI: 10.3390/cancers15133446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
MOTIVATION Extracellular vesicles (EVs) are produced and released by most cells and are now recognized to play a role in intercellular communication through the delivery of molecular cargo, including proteins, lipids, and RNA. Small RNA sequencing (small RNA-seq) has been widely used to characterize the small RNA content in EVs. However, there is a lack of a systematic assessment of the quality, technical biases, RNA composition, and RNA biotypes enrichment for small RNA profiling of EVs across cell types, biofluids, and conditions. METHODS We collected and reanalyzed small RNA-seq datasets for 2756 samples from 83 studies involving 55 with EVs only and 28 with both EVs and matched donor cells. We assessed their quality by the total number of reads after adapter trimming, the overall alignment rate to the host and non-host genomes, and the proportional abundance of total small RNA and specific biotypes, such as miRNA, tRNA, rRNA, and Y RNA. RESULTS We found that EV extraction methods varied in their reproducibility in isolating small RNAs, with effects on small RNA composition. Comparing proportional abundances of RNA biotypes between EVs and matched donor cells, we discovered that rRNA and tRNA fragments were relatively enriched, but miRNAs and snoRNA were depleted in EVs. Except for the export of eight miRNAs being context-independent, the selective release of most miRNAs into EVs was study-specific. CONCLUSION This work guides quality control and the selection of EV isolation methods and enhances the interpretation of small RNA contents and preferential loading in EVs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - T. Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA;
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
18
|
Filin AA, Chernysheva AA, Pavlova GV, Loshhenov VB, Gurina OI. [Extracellular vesicles for diagnosis and therapy of gliomas: problems and opportunities]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:419-426. [PMID: 36573408 DOI: 10.18097/pbmc20226806419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glioblastoma is a primary brain tumor and one of the most aggressive malignant neoplasms. The prognosis remains poor with a short survival period after diagnosis even in the case of timely detection and early treatment with the use of advanced chemotherapy, radiation therapy and surgical treatment. In this regard, the research of the main pathogenetic links in the glioblastoma development continues. The current focus is on studying the molecular characteristics of tumours, including the analysis of extracellular vesicles, which play an essential role in intercellular communication processes. In this review, in order to provide up-to-date information on the role of extracellular vesicles in the diagnosis and therapy of gliomas, the analysis of the achieved results of Russian and foreign research related to this area has been carried out. The main goal of this review is to describe the features of extracellular vesicles as the containers and glioma marker transporters, as well as nucleic acids used in diagnosis and therapy.
Collapse
Affiliation(s)
- A A Filin
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Chernysheva
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G V Pavlova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - V B Loshhenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - O I Gurina
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Saghazadeh A, Rezaei N. MicroRNA expression profiles of peripheral blood and mononuclear cells in myasthenia gravis: A systematic review. Int Immunopharmacol 2022; 112:109205. [PMID: 36087508 DOI: 10.1016/j.intimp.2022.109205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Studies have described the role of microRNAs (miRNAs) in thymic function, along with directly observing the altered expression of miRNAs in thymuses of myasthenia gravis (MG) patients; so, miRNAs became a core component in the pathophysiology of MG. However, because the miRNA analysis results are contradictory, the identification of MG-related miRNAs is daunting. OBJECTIVE We did a systematic review of studies analyzing the miRNA expression profile of peripheral blood and mononuclear cells for patients with MG. METHODS We ran a database search in PubMed, Scopus, and Web of Science on August 17, 2021. Original articles that analyzed miRNA profiles in peripheral blood (serum, plasma, and whole blood) and peripheral blood mononuclear cells (PBMCs) for patients with MG in comparison with a non-MG or healthy control (HC) group were eligible. The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS 26 studies were included. The quality of studies was fair (median score, 5). Among 226 different miRNAs that were deregulated in at least one study (range, 1-87), ten miRNAs were significantly deregulated in three or more studies. Five miRNAs (50%) showed the same deregulation: miR-106b-3p and miR-21-5p were consistently upregulated, and miR-20b, miR-15b, and miR-16 were consistently downregulated. Also, there were five miRNAs that were mostly upregulated, miR-150-5p, miR-146a, miR-30e-5p, and miR-338-3p, or downregulated, miR-324-3p, across studies. CONCLUSION These miRNAs contribute to different pathways, importantly neural apoptosis and autophagy, inflammation, T regulatory cell development, and T helper cell balance. Prior to being used for diagnostic and therapeutic purposes, it is required to pursue molecular mechanisms these consistently and mostly dysregulated miRNAs specifically use in the context of MG.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
20
|
Vijayan A, Fatima S, Sowmya A, Vafaee F. Blood-based transcriptomic signature panel identification for cancer diagnosis: benchmarking of feature extraction methods. Brief Bioinform 2022; 23:6658855. [PMID: 35945147 DOI: 10.1093/bib/bbac315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid biopsy has shown promise for cancer diagnosis due to its minimally invasive nature and the potential for novel biomarker discovery. However, the low concentration of relevant blood-based biosources and the heterogeneity of samples (i.e. the variability of relative abundance of molecules identified), pose major challenges to biomarker discovery. Moreover, the number of molecular measurements or features (e.g. transcript read counts) per sample could be in the order of several thousand, whereas the number of samples is often substantially lower, leading to the curse of dimensionality. These challenges, among others, elucidate the importance of a robust biomarker panel identification or feature extraction step wherein relevant molecular measurements are identified prior to classification for cancer detection. In this work, we performed a benchmarking study on 12 feature extraction methods using transcriptomic profiles derived from different blood-based biosources. The methods were assessed both in terms of their predictive performance and the robustness of the biomarker panels in diagnosing cancer or stratifying cancer subtypes. While performing the comparison, the feature extraction methods are categorized into feature subset selection methods and transformation methods. A transformation feature extraction method, namely partial least square discriminant analysis, was found to perform consistently superior in terms of classification performance. As part of the benchmarking study, a generic pipeline has been created and made available as an R package to ensure reproducibility of the results and allow for easy extension of this study to other datasets (https://github.com/VafaeeLab/bloodbased-pancancer-diagnosis).
Collapse
Affiliation(s)
- Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute, NSW, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.,UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Microvesicles and Microvesicle-Associated microRNAs Reflect Glioblastoma Regression: Microvesicle-Associated miR-625-5p Has Biomarker Potential. Int J Mol Sci 2022; 23:ijms23158398. [PMID: 35955533 PMCID: PMC9369245 DOI: 10.3390/ijms23158398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and recurrent form of brain cancer in adults. We hypothesized that the identification of biomarkers such as certain microRNAs (miRNAs) and the circulating microvesicles (MVs) that transport them could be key to establishing GB progression, recurrence and therapeutic response. For this purpose, circulating MVs were isolated from the plasma of GB patients (before and after surgery) and of healthy subjects and characterized by flow cytometry. OpenArray profiling and the individual quantification of selected miRNAs in plasma and MVs was performed, followed by target genes’ prediction and in silico survival analysis. It was found that MVs’ parameters (number, EGFRvIII and EpCAM) decreased after the surgical resection of GB tumors, but the inter-patient variability was high. The expression of miR-106b-5p, miR-486-3p, miR-766-3p and miR-30d-5p in GB patients’ MVs was restored to control-like levels after surgery: miR-106b-5p, miR-486-3p and miR-766-3p were upregulated, while miR-30d-5p levels were downregulated after surgical resection. MiR-625-5p was only identified in MVs isolated from GB patients before surgery and was not detected in plasma. Target prediction and pathway analysis showed that the selected miRNAs regulate genes involved in cancer pathways, including glioma. In conclusion, miR-625-5p shows potential as a biomarker for GB regression or recurrence, but further in-depth studies are needed.
Collapse
|
22
|
Wang D, Liu X, Cao L, Gong S, He Y, Jiang X, Wang Z. miR-486-3p Controls the Apoptosis of Endometrial Carcinoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study aimed to discuss the mechanism of miR-486-3p in controlling the apoptosis of endometrial carcinoma (EC) cells. EC cells were divided into NC group, miR-486-3p mimic and miR-486-3p inhibitor group followed by analysis of miR-486-3p level by Real-time PCR, cell proliferation
by spectrophotometric method, apoptosis by FCM, cell migration and invasion by Transwell analysis. EC cells showed reduced miR-486-3p level. The EC malignant biological behaviors could be prompted through retraining miR-486-3p level with increased EC cell invasive capacity. DDR1 was a target
of miR-486-3p. The variation of tumor activity could be regulated through controlling DDR1 expression. In conclusion, the apoptotic and invasive characteristic of EC cells are restrained after overexpression of miR-486-3p in EC cells through targeting DDR1, indicating that miR-486-3p could
be considered to be one kind of brand-new target for the treatment of EC.
Collapse
Affiliation(s)
- Donghua Wang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Lirong Cao
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Shixiong Gong
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Yi He
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Xiangbin Jiang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Zhongxian Wang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| |
Collapse
|
23
|
Wei L, Zou C, Chen L, Lin Y, Liang L, Hu B, Mao Y, Zou D. Molecular Insights and Prognosis Associated With RBM8A in Glioblastoma. Front Mol Biosci 2022; 9:876603. [PMID: 35573726 PMCID: PMC9098818 DOI: 10.3389/fmolb.2022.876603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most invasive brain tumors, and it is associated with high rates of recurrence and mortality. The purpose of this study was to investigate the expression of RBM8A in GBM and the potential influence of its expression on the disease. Methods: Levels of RBM8A mRNA in GBM patients and controls were examined in The Cancer Genome Atlas (TCGA), GSE16011 and GSE90604 databases. GBM samples in TCGA were divided into RBM8Ahigh and RBM8Alow groups. Differentially expressed genes (DEGs) between GBM patients and controls were identified, as were DEGs between RBM8Ahigh and RBM8Alow groups. DEGs common to both of these comparisons were analyzed for coexpression and regression analyses. In addition, we identified potential effects of RBM8A on competing endogenous RNAs, immune cell infiltration, methylation modifications, and somatic mutations. Results: RBM8A is expressed at significantly higher levels in GBM than control samples, and its level correlates with tumor purity. We identified a total of 488 mRNAs that differed between GBM and controls as well as between RBM8Ahigh and RBM8Alow groups, which enrichment analysis revealed to be associated mainly with neuroblast proliferation, and T cell immune responses. We identified 174 mRNAs that gave areas under the receiver operating characteristic curve >0.7 among coexpression module genes, of which 13 were significantly associated with overall survival of GBM patients. We integrated 11 candidate mRNAs through LASSO algorithm, then nomogram, risk score, and decision curve analyses were analyzed. We found that RBM8A may compete with DLEU1 for binding to miR-128-1-5p, and aberrant RBM8A expression was associations with tumor infiltration by immune cells. Some mRNAs associated with GBM prognosis also appear to be methylated or mutated. Conclusions: Our study strongly links RBM8A expression to GBM pathobiology and patient prognosis. The candidate mRNAs identified here may lead to therapeutic targets against the disease.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| |
Collapse
|
24
|
Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:23-73. [DOI: 10.1007/978-3-031-08356-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Griffin CP, Paul CL, Alexander KL, Walker MM, Hondermarck H, Lynam J. Postmortem brain donations vs premortem surgical resections for glioblastoma research: viewing the matter as a whole. Neurooncol Adv 2022; 4:vdab168. [PMID: 35047819 PMCID: PMC8760897 DOI: 10.1093/noajnl/vdab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been limited improvements in diagnosis, treatment, and outcomes of primary brain cancers, including glioblastoma, over the past 10 years. This is largely attributable to persistent deficits in understanding brain tumor biology and pathogenesis due to a lack of high-quality biological research specimens. Traditional, premortem, surgical biopsy samples do not allow full characterization of the spatial and temporal heterogeneity of glioblastoma, nor capture end-stage disease to allow full evaluation of the evolutionary and mutational processes that lead to treatment resistance and recurrence. Furthermore, the necessity of ensuring sufficient viable tissue is available for histopathological diagnosis, while minimizing surgically induced functional deficit, leaves minimal tissue for research purposes and results in formalin fixation of most surgical specimens. Postmortem brain donation programs are rapidly gaining support due to their unique ability to address the limitations associated with surgical tissue sampling. Collecting, processing, and preserving tissue samples intended solely for research provides both a spatial and temporal view of tumor heterogeneity as well as the opportunity to fully characterize end-stage disease from histological and molecular standpoints. This review explores the limitations of traditional sample collection and the opportunities afforded by postmortem brain donations for future neurobiological cancer research.
Collapse
Affiliation(s)
- Cassandra P Griffin
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research Services, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christine L Paul
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre Cancer Research, Innovation and Translation, University of Newcastle, New South Wales, Australia
- Priority Research Centre Health Behaviour, University of Newcastle, New South Wales, Australia
| | - Kimberley L Alexander
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, New South Wales, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Lynam
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Cancer Research Alliance, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Medical Oncology, Calvary Mater, Newcastle, New South Wales, Australia
| |
Collapse
|
26
|
Nikoobakht M, Shamshiripour P, Shahin M, Bouzari B, Razavi-Hashemi M, Ahmadvand D, Akbarpour M. A systematic update to circulating extracellular vesicles proteome; transcriptome and small RNA-ome as glioma diagnostic, prognostic and treatment-response biomarkers. Cancer Treat Res Commun 2021; 30:100490. [PMID: 34923387 DOI: 10.1016/j.ctarc.2021.100490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Brain gliomas are major neurosurgical challenges due to high mortality and morbidity. Hence, development of novel biomarkers is of great value to plan appropriate treatment strategy. Evaluation of the molecular content of extracellular vesicles (EVs) as novel non-invasive biomarker repertoires can provide a real-time portrait of disease status. This study aims to provide a systematic, comprehensive and critical report of the diagnostic and prognostic significance of EV biomarkers (proteins, DNAs and RNAs) for brain gliomas, discuss their biogenesis and passage through the blood brain barrier, and also highlight the high throughput methods used for EV biomarker discovery; as well as discussing potential limitations of EV isolation and characterization methods as glioma diagnostic, prognostic or treatment response biomarkers. Moreover, we critically appraise the bias risk in the previous studies, discuss the limitations EV biomarker discovery faces to enter neurosurgical practice in the future, and highlight the need for more optimized protocols for EV isolation and biomarker discovery in high throughput studies. The current systematic review was conducted upon PRISMA guidelines [10].
Collapse
Affiliation(s)
- Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Imaging Technologies and Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Shahin
- Department of Oncology, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Davoud Ahmadvand
- Department of Medical Imaging Technologies and Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno-TACT), Universal Science and Education Research Network (USERN); Advanced Cellular Therapeutics Facility, David and Etta Jonas Center for Cellular Therapy, Hematopoietic Cellular Therapy Program, The University of Chicago Medical Center, Chicago, 60637 IL, USA.
| |
Collapse
|
27
|
Eibl RH, Schneemann M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel) 2021; 13:5429. [PMID: 34771592 PMCID: PMC8582521 DOI: 10.3390/cancers13215429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Two decades of "promising results" in liquid biopsy have led to both continuing disappointment and hope that the new era of minimally invasive, personalized analysis can be applied for better diagnosis, prognosis, monitoring, and therapy of cancer. Here, we briefly highlight the promises, developments, and challenges related to liquid biopsy of brain tumors, including circulating tumor cells, cell-free nucleic acids, extracellular vesicles, and miRNA; we further discuss the urgent need to establish suitable biomarkers and the right standards to improve modern clinical management of brain tumor patients with the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
28
|
Bartos M, Siegl F, Kopkova A, Radova L, Oppelt J, Vecera M, Kazda T, Jancalek R, Hendrych M, Hermanova M, Kasparova P, Pleskacova Z, Vybihal V, Fadrus P, Smrcka M, Lakomy R, Lipina R, Cesak T, Slaby O, Sana J. Small RNA Sequencing Identifies PIWI-Interacting RNAs Deregulated in Glioblastoma-piR-9491 and piR-12488 Reduce Tumor Cell Colonies In Vitro. Front Oncol 2021; 11:707017. [PMID: 34485142 PMCID: PMC8415021 DOI: 10.3389/fonc.2021.707017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequently occurring primary malignant brain tumor of astrocytic origin. To change poor prognosis, it is necessary to deeply understand the molecular mechanisms of gliomagenesis and identify new potential biomarkers and therapeutic targets. PIWI-interacting RNAs (piRNAs) help in maintaining genome stability, and their deregulation has already been observed in many tumors. Recent studies suggest that these molecules could also play an important role in the glioma biology. To determine GBM-associated piRNAs, we performed small RNA sequencing analysis in the discovery set of 19 GBM and 11 non-tumor brain samples followed by TaqMan qRT-PCR analyses in the independent set of 77 GBM and 23 non-tumor patients. Obtained data were subsequently bioinformatically analyzed. Small RNA sequencing revealed 58 significantly deregulated piRNA molecules in GBM samples in comparison with non-tumor brain tissues. Deregulation of piR-1849, piR-9491, piR-12487, and piR-12488 was successfully confirmed in the independent groups of patients and controls (all p < 0.0001), and piR-9491 and piR-12488 reduced GBM cells’ ability to form colonies in vitro. In addition, piR-23231 was significantly associated with the overall survival of the GBM patients treated with Stupp regimen (p = 0.007). Our results suggest that piRNAs could be a novel promising diagnostic and prognostic biomarker in GBM potentially playing important roles in gliomagenesis.
Collapse
Affiliation(s)
- Michael Bartos
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Alena Kopkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Medical Faculty, Masaryk University, Brno, Czechia
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Michal Hendrych
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Marketa Hermanova
- 1st Department of Pathology, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czechia
| | - Petra Kasparova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Zuzana Pleskacova
- Department of Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Vaclav Vybihal
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Pavel Fadrus
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Brno, Czechia
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Cesak
- Department of Neurosurgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Pathology, University Hospital Brno, Brno, Czechia
| |
Collapse
|
29
|
Sourani A, Saghaei S, Sabouri M, Soleimani M, Dehghani L. A systematic review of extracellular vesicles as non-invasive biomarkers in glioma diagnosis, prognosis, and treatment response monitoring. Mol Biol Rep 2021; 48:6971-6985. [PMID: 34460059 DOI: 10.1007/s11033-021-06687-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022]
Abstract
The present systematic review was done to investigate the possible application of Extracellular vesicles (EVs) in the diagnosis, prognosis, and treatment response monitoring of gliomas using available literature to wrap up the final applicable conclusion in this regard. we searched PubMed/MEDLINE, Scopus, and ISI Web of Science databases. Authors evaluated the quality of the included studies by the QUADAS-2 tool. In total, 2037 published datasets were retrieved through systematic search. Upon screening for eligibility, 35 datasets were determined as eligible. Exosome was the EV-subtype described in the majority of studies, and most datasets used serum as the primary EVs isolation source. EVs isolation was primarily conducted by ultracentrifugation. 31 datasets reported that EVs hold considerable potential for being used in diagnostics, with the majority reporting different types of miRNAs as biomarkers. Besides, 8 datasets reported that EVs could be a potential source of prognostic biomarkers. And finally, 3 datasets reported that EVs might be a reliable strategy for monitoring therapy response in glioma patients. According to the findings of the current systematic review, it seems that miR-301, miR-21, and HOTAIR had the highest diagnostic accuracy. However, heterogeneous and limited evidence regarding prognosis and treatment response monitoring precludes us from drawing a practical conclusion regarding EVs.
Collapse
Affiliation(s)
- Arman Sourani
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeid Saghaei
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masih Sabouri
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dehghani
- Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Alenda C, Rojas E, Valor LM. FFPE samples from cavitational ultrasonic surgical aspirates are suitable for RNA profiling of gliomas. PLoS One 2021; 16:e0255168. [PMID: 34293049 PMCID: PMC8297856 DOI: 10.1371/journal.pone.0255168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023] Open
Abstract
During surgical procedures for gliomas, tissue material obtained from cavitational ultrasonic surgical aspirators (CUSAs) is generally discarded but can actually exceed the amount and quality of certain tumour core resections (TCRs). Despite reports indicating the suitability of CUSA-derived material for diagnosis and research, its use is still marginal. We extended these conclusions to formalin-fixed, paraffin-embedded (FFPE) samples, the most common format for archival tumour tissue in anatomical pathology departments, by conducting for the first time RNA-seq analysis in CUSA aspirates. We compared the molecular diagnosis of somatic mutations used in the clinical routine and the gene expression profiles of fixed solid material from CUSA aspirates and TCRs from the same patients in selected gliomas encompassing grades II to IV. Despite the characteristic heterogeneity of gliomas, we found substantial similarities between the corresponding aspirates and TCRs that included transcriptional signatures associated with glioma subtypes. Based on these results, we confirmed that CUSA-fixed biomaterials from glioma surgeries are appropriate for downstream applications and biomarkers screening.
Collapse
Affiliation(s)
- Cristina Alenda
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Estefanía Rojas
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Departamento de Patología, Hospital General Universitario de Alicante, Alicante, Spain
| | - Luis M. Valor
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario de Alicante, Alicante, Spain
- * E-mail:
| |
Collapse
|
31
|
Kovács OT, Soltész-Katona E, Marton N, Baricza E, Hunyady L, Turu G, Nagy G. Impact of Medium-Sized Extracellular Vesicles on the Transduction Efficiency of Adeno-Associated Viruses in Neuronal and Primary Astrocyte Cell Cultures. Int J Mol Sci 2021; 22:ijms22084221. [PMID: 33921740 PMCID: PMC8073863 DOI: 10.3390/ijms22084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Adeno-associated viruses (AAV) are safe and efficient gene therapy vectors with promising results in the treatment of several diseases. Extracellular vesicles (EV) are phospholipid bilayer-surrounded structures carrying several types of lipids, proteins, and nucleic acids with the ability to cross biological barriers. EV-associated AAVs might serve as new and efficient gene therapy vectors considering that they carry the benefits of both AAVs and EVs. (2) We tested vesicle-associated AAVs and vesicles mixed with AAVs on two major cell types of the central nervous system: a neural cell line (N2A) and primary astrocyte cells. (3) In contrast to previously published in vivo observations, the extracellular vesicle packaging did not improve but, in the case of primary astrocyte cells, even inhibited the infection capacity of the AAV particles. The observed effect was not due to the inhibitory effects of the vesicles themselves, since mixing the AAVs with extracellular vesicles did not change the effectiveness. (4) Our results suggest that improvement of the in vivo efficacy of the EV-associated AAV particles is not due to the enhanced interaction between the AAV and the target cells, but most likely to the improved delivery of the AAVs through tissue barriers and to the shielding of AAVs from neutralizing antibodies.
Collapse
Affiliation(s)
- Orsolya Tünde Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Nikolett Marton
- Jahn Ferenc Dél-pesti Hospital, Department of Radiology, Köves street 1, 1204 Budapest, Hungary;
| | - Eszter Baricza
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| | - György Nagy
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Árpád fejedelem street 7, 1023 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| |
Collapse
|